• Previous Article
    Stabilized finite element methods based on multiscale enrichment for Allen-Cahn and Cahn-Hilliard equations
  • CPAA Home
  • This Issue
  • Next Article
    Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities
doi: 10.3934/cpaa.2022010
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type

School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan 410083, China

* Corresponding author

Received  March 2021 Revised  October 2021 Early access December 2021

Fund Project: This work is supported by the National Natural Science Foundation of China (No:11971485) and the NSFC (11871475)

In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:
$\left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P)$
where
$ b>0 $
is a parameter,
$ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $
,
$ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) $
and
$ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $
. Under some "Berestycki-Lions type assumptions" on the nonlinearity
$ f $
which are almost necessary, we prove that problem
$ (\rm P) $
has a nontrivial solution
$ \bar{u}\in H^{1}(\mathbb{R}^{3}) $
such that
$ \bar{v} = G(\bar{u}) $
is a ground state solution of the following problem
$-\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} dx \right) \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P})$
where
$ G(t): = \int_{0}^{t} g(s) ds $
. We also give a minimax characterization for the ground state solution
$ \bar{v} $
.
Citation: Die Hu, Xianhua Tang, Qi Zhang. Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2022010
References:
[1]

H. Berestycki and P. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[2]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc Amer Math Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.  Google Scholar

[3]

S. Cuccagna, On instability of excited states of the nonlinear quasilinear Schrödinger equation, Phys. D., 238 (2009), 38-54.  doi: 10.1016/j.physd.2008.08.010.  Google Scholar

[4]

S. Chen and X. Tang, Berestycki-Lions conditions on ground state solutions for a nonlinear Schrödinger equation with variable potentials, Adv. Nonlinear Anal., 9 (2020), 496-515.  doi: 10.1515/anona-2020-0011.  Google Scholar

[5]

J. ChenX. TangZ. Gao and B. Cheng, Ground state sign-changing solutions for a class of generelized quasilinear Schrödinger equations with Kirchhoff-type perturbation, J. Fixed Point Theory Appl., 19 (2017), 3127-3149.  doi: 10.1007/s11784-017-0475-4.  Google Scholar

[6]

M. Colin and L. Jeanjean, Louis solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[7]

J. ChenX. Tang and B. Cheng, Existence and nonexistence of positive solutions for a class of generalized quasilinear Schrödinger equations involving a Kirchhoff-type perturbation with critical Sobolev exponent, J. Math. Phys., 59 (2018), 021505.  doi: 10.1063/1.5024898.  Google Scholar

[8]

Y. DengS. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differ. Equ., 260 (2015), 115-147.  doi: 10.1016/j.jde.2014.09.006.  Google Scholar

[9]

Y. DengW. Huang and S. Zhang, Ground state solutions for generalized quasilinear Schrödinger equations with critical growth and lower power subcritical perturbation, Adv. Nonlinear Stud., 19 (2019), 219-237.  doi: 10.1515/ans-2018-2029.  Google Scholar

[10]

Z. Guo, Ground states for Kirchhoff equations without compact condition, J. Differ. Equ., 259 (2015), 2884-2902.  doi: 10.1016/j.jde.2015.04.005.  Google Scholar

[11]

D. Hu, X. Tang and Q. Zhang, Existence of ground state solutions for Kirchhoff-type problem with variable potential, Appl. Anal., (2021), 1–14. doi: 10.1080/00036811.2021.1947499.  Google Scholar

[12]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbb{R}^{N}$, Proc. Roy. Soc. Edinburgh Sect. A., 129 (1999), 787-809.  doi: 10.1017/S0308210500013147.  Google Scholar

[13]

L. Jeanjean and J. Toland, Bounded Palais-Smale mountain-pass sequences, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 23-28.  doi: 10.1016/S0764-4442(98)80097-9.  Google Scholar

[14]

G. Kirchhoff, Mechanik, Teubner, Leipzig., 1883. Google Scholar

[15]

G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3}$, J. Differ. Equ., 257 (2014), 566-600.  doi: 10.1016/j.jde.2014.04.011.  Google Scholar

[16]

F. LiX. Zhu and Z. Liang, Multiple solutions to a class of generalized quasilinear Schrödinger equations with a Kirchhoff-type perturbation, J. Math. Anal. Appl., 443 (2016), 11-38.  doi: 10.1016/j.jmaa.2016.05.005.  Google Scholar

[17]

J. LiuY. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II, J. Differ. Equ., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[18]

J. Liu and Z. Wang, Multiple solutions for quasilinear elliptic equations with a finite potential well, Nonlinear Anal. RWA., 257 (2014), 2874-2899.  doi: 10.1016/j.jde.2014.06.002.  Google Scholar

[19]

X. LiuJ. Liu and Z. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.  doi: 10.1090/S0002-9939-2012-11293-6.  Google Scholar

[20]

P. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. Part I, Ann Inst H Poincaré Anal Non Linéaire, 1 (1984), 109-145.   Google Scholar

[21]

J. LiuY. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Partial Differ. Equ., 29 (2004), 879-901.  doi: 10.1081/PDE-120037335.  Google Scholar

[22]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA., 80 (2013), 194-201.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[23]

X. Tang and S. Chen, Ground stste solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differ. Equ., 56 (2017), 110-134.  doi: 10.1007/s00526-017-1214-9.  Google Scholar

[24]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[25]

J. Zhao and X. Liu, Ground state solutions for quasilinear equations of Kirchhoff type, J. Differ. Equ., 2020 (2020), 1-14.   Google Scholar

[26]

Q. Zhang and D. Hu, Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type, Complex Var. Elliptic Equ., (2021), 1–15. doi: 10.1080/17476933.2021.1916918.  Google Scholar

[27]

J. Zhang, X. Tang and D. Qin, Infinitely many solutions for Kirchhoff problems with lack of compactness, Nonlinear Anal., 197 (2020), 111856, 31 pp. doi: 10.1016/j.na.2020.111856.  Google Scholar

show all references

References:
[1]

H. Berestycki and P. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[2]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc Amer Math Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.  Google Scholar

[3]

S. Cuccagna, On instability of excited states of the nonlinear quasilinear Schrödinger equation, Phys. D., 238 (2009), 38-54.  doi: 10.1016/j.physd.2008.08.010.  Google Scholar

[4]

S. Chen and X. Tang, Berestycki-Lions conditions on ground state solutions for a nonlinear Schrödinger equation with variable potentials, Adv. Nonlinear Anal., 9 (2020), 496-515.  doi: 10.1515/anona-2020-0011.  Google Scholar

[5]

J. ChenX. TangZ. Gao and B. Cheng, Ground state sign-changing solutions for a class of generelized quasilinear Schrödinger equations with Kirchhoff-type perturbation, J. Fixed Point Theory Appl., 19 (2017), 3127-3149.  doi: 10.1007/s11784-017-0475-4.  Google Scholar

[6]

M. Colin and L. Jeanjean, Louis solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[7]

J. ChenX. Tang and B. Cheng, Existence and nonexistence of positive solutions for a class of generalized quasilinear Schrödinger equations involving a Kirchhoff-type perturbation with critical Sobolev exponent, J. Math. Phys., 59 (2018), 021505.  doi: 10.1063/1.5024898.  Google Scholar

[8]

Y. DengS. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differ. Equ., 260 (2015), 115-147.  doi: 10.1016/j.jde.2014.09.006.  Google Scholar

[9]

Y. DengW. Huang and S. Zhang, Ground state solutions for generalized quasilinear Schrödinger equations with critical growth and lower power subcritical perturbation, Adv. Nonlinear Stud., 19 (2019), 219-237.  doi: 10.1515/ans-2018-2029.  Google Scholar

[10]

Z. Guo, Ground states for Kirchhoff equations without compact condition, J. Differ. Equ., 259 (2015), 2884-2902.  doi: 10.1016/j.jde.2015.04.005.  Google Scholar

[11]

D. Hu, X. Tang and Q. Zhang, Existence of ground state solutions for Kirchhoff-type problem with variable potential, Appl. Anal., (2021), 1–14. doi: 10.1080/00036811.2021.1947499.  Google Scholar

[12]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\mathbb{R}^{N}$, Proc. Roy. Soc. Edinburgh Sect. A., 129 (1999), 787-809.  doi: 10.1017/S0308210500013147.  Google Scholar

[13]

L. Jeanjean and J. Toland, Bounded Palais-Smale mountain-pass sequences, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 23-28.  doi: 10.1016/S0764-4442(98)80097-9.  Google Scholar

[14]

G. Kirchhoff, Mechanik, Teubner, Leipzig., 1883. Google Scholar

[15]

G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3}$, J. Differ. Equ., 257 (2014), 566-600.  doi: 10.1016/j.jde.2014.04.011.  Google Scholar

[16]

F. LiX. Zhu and Z. Liang, Multiple solutions to a class of generalized quasilinear Schrödinger equations with a Kirchhoff-type perturbation, J. Math. Anal. Appl., 443 (2016), 11-38.  doi: 10.1016/j.jmaa.2016.05.005.  Google Scholar

[17]

J. LiuY. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II, J. Differ. Equ., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[18]

J. Liu and Z. Wang, Multiple solutions for quasilinear elliptic equations with a finite potential well, Nonlinear Anal. RWA., 257 (2014), 2874-2899.  doi: 10.1016/j.jde.2014.06.002.  Google Scholar

[19]

X. LiuJ. Liu and Z. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.  doi: 10.1090/S0002-9939-2012-11293-6.  Google Scholar

[20]

P. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. Part I, Ann Inst H Poincaré Anal Non Linéaire, 1 (1984), 109-145.   Google Scholar

[21]

J. LiuY. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Partial Differ. Equ., 29 (2004), 879-901.  doi: 10.1081/PDE-120037335.  Google Scholar

[22]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA., 80 (2013), 194-201.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[23]

X. Tang and S. Chen, Ground stste solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differ. Equ., 56 (2017), 110-134.  doi: 10.1007/s00526-017-1214-9.  Google Scholar

[24]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[25]

J. Zhao and X. Liu, Ground state solutions for quasilinear equations of Kirchhoff type, J. Differ. Equ., 2020 (2020), 1-14.   Google Scholar

[26]

Q. Zhang and D. Hu, Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type, Complex Var. Elliptic Equ., (2021), 1–15. doi: 10.1080/17476933.2021.1916918.  Google Scholar

[27]

J. Zhang, X. Tang and D. Qin, Infinitely many solutions for Kirchhoff problems with lack of compactness, Nonlinear Anal., 197 (2020), 111856, 31 pp. doi: 10.1016/j.na.2020.111856.  Google Scholar

[1]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure & Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[2]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[3]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[4]

Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124

[5]

Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021115

[6]

Jiu Liu, Jia-Feng Liao, Chun-Lei Tang. Positive solution for the Kirchhoff-type equations involving general subcritical growth. Communications on Pure & Applied Analysis, 2016, 15 (2) : 445-455. doi: 10.3934/cpaa.2016.15.445

[7]

Qian Shen, Na Wei. Stability of ground state for the Schrödinger-Poisson equation. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2805-2816. doi: 10.3934/jimo.2020095

[8]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292

[9]

Jianhua Chen, Xianhua Tang, Bitao Cheng. Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 493-517. doi: 10.3934/cpaa.2019025

[10]

Yanfang Xue, Chunlei Tang. Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1121-1145. doi: 10.3934/cpaa.2018054

[11]

Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004

[12]

Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214

[13]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

[14]

Norihisa Ikoma. Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 943-966. doi: 10.3934/dcds.2015.35.943

[15]

Xiao-Jing Zhong, Chun-Lei Tang. The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem. Communications on Pure & Applied Analysis, 2017, 16 (2) : 611-628. doi: 10.3934/cpaa.2017030

[16]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[17]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[18]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[19]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[20]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

2020 Impact Factor: 1.916

Article outline

[Back to Top]