• Previous Article
    Uniqueness and sign properties of minimizers in a quasilinear indefinite problem
  • CPAA Home
  • This Issue
  • Next Article
    Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington-DeAngelis type incidence
doi: 10.3934/cpaa.2022011
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Uniform approximation property of frames with applications to erasure recovery

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

* Corresponding author

Received  April 2021 Revised  November 2021 Early access December 2021

Fund Project: This work was partially supported by the National Natural Science Foundation of China (11801282, 12101329 and 12171250) and the Fundamental Research Funds for the Central Universities

In this paper, we introduce frames with the uniform approximation property (UAP). We show that with a UAP frame, it is efficient to recover a signal from its frame coefficients with one erasure while the recovery error is smaller than that with the ordinary recovery algorithm. In fact, our approach gives a balance between the recovery accuracy and the computational complexity.

Citation: Ting Chen, Fusheng Lv, Wenchang Sun. Uniform approximation property of frames with applications to erasure recovery. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2022011
References:
[1]

A. S. BandeiraM. FickusD. G. Mixon and P. Wong, The road to deterministic matrices with the restricted isometry property, J. Fourier Anal. Appl., 19 (2013), 1123-1149.  doi: 10.1007/s00041-013-9293-2.  Google Scholar

[2]

B. G. Bodmann, P. G. Casazza, D. Edidin and R. Balan, Frames for linear reconstruction without phase, in 2008 42nd Annual Conference on Information Sciences and Systems, 2008,721–726. Google Scholar

[3]

B. G. Bodmann, Optimal linear transmission by loss-insensitive packet encoding, Appl. Comput. Harmon. Anal., 22 (2007), 274-285.  doi: 10.1016/j.acha.2006.07.003.  Google Scholar

[4]

B. G. Bodmann and N. Hammen, Stable phase retrieval with low-redundancy frames, Adv. Comput. Math., 41 (2015), 317-331.  doi: 10.1007/s10444-014-9359-y.  Google Scholar

[5]

B. G. Bodmann and V. I. Paulsen, Frames, graphs and erasures, Linear Algebra Appl., 404 (2005), 118-146.  doi: 10.1016/j.laa.2005.02.016.  Google Scholar

[6]

B. G. BodmannV. I. Paulsen and M. Tomforde, Equiangular tight frames from complex Seidel matrices containing cube roots of unity, Linear Algebra Appl., 430 (2009), 396-417.  doi: 10.1016/j.laa.2008.08.002.  Google Scholar

[7]

P. G. Casazza and J. Kovačević, Equal-norm tight frames with erasures, Adv. Comput. Math., 18 (2003), 387-430.  doi: 10.1023/A:1021349819855.  Google Scholar

[8]

Q. ChengF. Lv and W. Sun, Frames of uniform subframe bounds with applications to erasures, Linear Algebra Appl., 555 (2018), 186-200.  doi: 10.1016/j.laa.2018.05.025.  Google Scholar

[9]

O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-25613-9.  Google Scholar

[10]

I. Daubechies, Ten lectures on wavelets, vol. 61 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. doi: 10.1137/1.9781611970104.  Google Scholar

[11]

M. FickusJ. JasperE. J. King and D. G. Mixon, Equiangular tight frames that contain regular simplices, Linear Algebra Appl., 555 (2018), 98-138.  doi: 10.1016/j.laa.2018.06.004.  Google Scholar

[12]

M. FickusJ. JasperD. G. MixonJ. D. Peterson and C. E. Watson, Equiangular tight frames with centroidal symmetry, Appl. Comput. Harmon. Anal., 44 (2018), 476-496.  doi: 10.1016/j.acha.2016.06.004.  Google Scholar

[13]

B. Han and Z. Xu, Robustness properties of dimensionality reduction with Gaussian random matrices, Sci. China Math., 60 (2017), 1753-1778.  doi: 10.1007/s11425-016-9018-x.  Google Scholar

[14]

D. HanD. LarsonS. Scholze and W. Sun, Erasure recovery matrices for encoder protection, Appl. Comput. Harmon. Anal., 48 (2020), 766-786.  doi: 10.1016/j.acha.2018.09.004.  Google Scholar

[15]

D. HanF. Lv and W. Sun, Recovery of signals from unordered partial frame coefficients, Appl. Comput. Harmon. Anal., 44 (2018), 38-58.  doi: 10.1016/j.acha.2016.04.002.  Google Scholar

[16]

D. Han and W. Sun, Reconstruction of signals from frame coefficients with erasures at unknown locations, IEEE Trans. Inform. Theory, 60 (2014), 4013-4025.  doi: 10.1109/TIT.2014.2320937.  Google Scholar

[17]

T. Hoffman and J. P. Solazzo, Complex equiangular tight frames and erasures, Linear Algebra Appl., 437 (2012), 549-558.  doi: 10.1016/j.laa.2012.01.024.  Google Scholar

[18]

R. B. Holmes and V. I. Paulsen, Optimal frames for erasures, Linear Algebra Appl., 377 (2004), 31-51.  doi: 10.1016/j.laa.2003.07.012.  Google Scholar

[19]

D. Larson and S. Scholze, Signal reconstruction from frame and sampling erasures, J. Fourier Anal. Appl., 21 (2015), 1146-1167.  doi: 10.1007/s00041-015-9404-3.  Google Scholar

[20]

J. Leng and D. Han, Optimal dual frames for erasures II, Linear Algebra Appl., 435 (2011), 1464-1472.  doi: 10.1016/j.laa.2011.03.043.  Google Scholar

[21]

J. LengD. Han and T. Huang, Optimal dual frames for communication coding with probabilistic erasures, IEEE Trans. Signal Process., 59 (2011), 5380-5389.  doi: 10.1109/TSP.2011.2162955.  Google Scholar

[22]

J. Lopez and D. Han, Optimal dual frames for erasures, Linear Algebra Appl., 432 (2010), 471-482.  doi: 10.1016/j.laa.2009.08.031.  Google Scholar

[23]

P. G. MasseyM. A. Ruiz and D. Stojanoff, Optimal dual frames and frame completions for majorization, Appl. Comput. Harmon. Anal., 34 (2013), 201-223.  doi: 10.1016/j.acha.2012.03.011.  Google Scholar

[24]

P. M. Morillas, Optimal dual fusion frames for probabilistic erasures, Electron. J. Linear Algebra, 32 (2017), 191-203.  doi: 10.13001/1081-3810.3267.  Google Scholar

[25]

S. PehlivanD. Han and R. Mohapatra, Linearly connected sequences and spectrally optimal dual frames for erasures, J. Funct. Anal., 265 (2013), 2855-2876.  doi: 10.1016/j.jfa.2013.08.012.  Google Scholar

[26]

Y. Wang, Random matrices and erasure robust frames, J. Fourier Anal. Appl., 24 (2018), 1-16.  doi: 10.1007/s00041-016-9486-6.  Google Scholar

show all references

References:
[1]

A. S. BandeiraM. FickusD. G. Mixon and P. Wong, The road to deterministic matrices with the restricted isometry property, J. Fourier Anal. Appl., 19 (2013), 1123-1149.  doi: 10.1007/s00041-013-9293-2.  Google Scholar

[2]

B. G. Bodmann, P. G. Casazza, D. Edidin and R. Balan, Frames for linear reconstruction without phase, in 2008 42nd Annual Conference on Information Sciences and Systems, 2008,721–726. Google Scholar

[3]

B. G. Bodmann, Optimal linear transmission by loss-insensitive packet encoding, Appl. Comput. Harmon. Anal., 22 (2007), 274-285.  doi: 10.1016/j.acha.2006.07.003.  Google Scholar

[4]

B. G. Bodmann and N. Hammen, Stable phase retrieval with low-redundancy frames, Adv. Comput. Math., 41 (2015), 317-331.  doi: 10.1007/s10444-014-9359-y.  Google Scholar

[5]

B. G. Bodmann and V. I. Paulsen, Frames, graphs and erasures, Linear Algebra Appl., 404 (2005), 118-146.  doi: 10.1016/j.laa.2005.02.016.  Google Scholar

[6]

B. G. BodmannV. I. Paulsen and M. Tomforde, Equiangular tight frames from complex Seidel matrices containing cube roots of unity, Linear Algebra Appl., 430 (2009), 396-417.  doi: 10.1016/j.laa.2008.08.002.  Google Scholar

[7]

P. G. Casazza and J. Kovačević, Equal-norm tight frames with erasures, Adv. Comput. Math., 18 (2003), 387-430.  doi: 10.1023/A:1021349819855.  Google Scholar

[8]

Q. ChengF. Lv and W. Sun, Frames of uniform subframe bounds with applications to erasures, Linear Algebra Appl., 555 (2018), 186-200.  doi: 10.1016/j.laa.2018.05.025.  Google Scholar

[9]

O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-25613-9.  Google Scholar

[10]

I. Daubechies, Ten lectures on wavelets, vol. 61 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. doi: 10.1137/1.9781611970104.  Google Scholar

[11]

M. FickusJ. JasperE. J. King and D. G. Mixon, Equiangular tight frames that contain regular simplices, Linear Algebra Appl., 555 (2018), 98-138.  doi: 10.1016/j.laa.2018.06.004.  Google Scholar

[12]

M. FickusJ. JasperD. G. MixonJ. D. Peterson and C. E. Watson, Equiangular tight frames with centroidal symmetry, Appl. Comput. Harmon. Anal., 44 (2018), 476-496.  doi: 10.1016/j.acha.2016.06.004.  Google Scholar

[13]

B. Han and Z. Xu, Robustness properties of dimensionality reduction with Gaussian random matrices, Sci. China Math., 60 (2017), 1753-1778.  doi: 10.1007/s11425-016-9018-x.  Google Scholar

[14]

D. HanD. LarsonS. Scholze and W. Sun, Erasure recovery matrices for encoder protection, Appl. Comput. Harmon. Anal., 48 (2020), 766-786.  doi: 10.1016/j.acha.2018.09.004.  Google Scholar

[15]

D. HanF. Lv and W. Sun, Recovery of signals from unordered partial frame coefficients, Appl. Comput. Harmon. Anal., 44 (2018), 38-58.  doi: 10.1016/j.acha.2016.04.002.  Google Scholar

[16]

D. Han and W. Sun, Reconstruction of signals from frame coefficients with erasures at unknown locations, IEEE Trans. Inform. Theory, 60 (2014), 4013-4025.  doi: 10.1109/TIT.2014.2320937.  Google Scholar

[17]

T. Hoffman and J. P. Solazzo, Complex equiangular tight frames and erasures, Linear Algebra Appl., 437 (2012), 549-558.  doi: 10.1016/j.laa.2012.01.024.  Google Scholar

[18]

R. B. Holmes and V. I. Paulsen, Optimal frames for erasures, Linear Algebra Appl., 377 (2004), 31-51.  doi: 10.1016/j.laa.2003.07.012.  Google Scholar

[19]

D. Larson and S. Scholze, Signal reconstruction from frame and sampling erasures, J. Fourier Anal. Appl., 21 (2015), 1146-1167.  doi: 10.1007/s00041-015-9404-3.  Google Scholar

[20]

J. Leng and D. Han, Optimal dual frames for erasures II, Linear Algebra Appl., 435 (2011), 1464-1472.  doi: 10.1016/j.laa.2011.03.043.  Google Scholar

[21]

J. LengD. Han and T. Huang, Optimal dual frames for communication coding with probabilistic erasures, IEEE Trans. Signal Process., 59 (2011), 5380-5389.  doi: 10.1109/TSP.2011.2162955.  Google Scholar

[22]

J. Lopez and D. Han, Optimal dual frames for erasures, Linear Algebra Appl., 432 (2010), 471-482.  doi: 10.1016/j.laa.2009.08.031.  Google Scholar

[23]

P. G. MasseyM. A. Ruiz and D. Stojanoff, Optimal dual frames and frame completions for majorization, Appl. Comput. Harmon. Anal., 34 (2013), 201-223.  doi: 10.1016/j.acha.2012.03.011.  Google Scholar

[24]

P. M. Morillas, Optimal dual fusion frames for probabilistic erasures, Electron. J. Linear Algebra, 32 (2017), 191-203.  doi: 10.13001/1081-3810.3267.  Google Scholar

[25]

S. PehlivanD. Han and R. Mohapatra, Linearly connected sequences and spectrally optimal dual frames for erasures, J. Funct. Anal., 265 (2013), 2855-2876.  doi: 10.1016/j.jfa.2013.08.012.  Google Scholar

[26]

Y. Wang, Random matrices and erasure robust frames, J. Fourier Anal. Appl., 24 (2018), 1-16.  doi: 10.1007/s00041-016-9486-6.  Google Scholar

[1]

Radu Balan, Peter G. Casazza, Christopher Heil and Zeph Landau. Density, overcompleteness, and localization of frames. Electronic Research Announcements, 2006, 12: 71-86.

[2]

Manuel V. C. Vieira. Derivatives of eigenvalues and Jordan frames. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 115-126. doi: 10.3934/naco.2016003

[3]

Hanbing Liu, Yongdong Huang, Chongjun Li. Weaving K-fusion frames in hilbert spaces. Mathematical Foundations of Computing, 2020, 3 (2) : 101-116. doi: 10.3934/mfc.2020008

[4]

Mike Crampin, Tom Mestdag. Reduction of invariant constrained systems using anholonomic frames. Journal of Geometric Mechanics, 2011, 3 (1) : 23-40. doi: 10.3934/jgm.2011.3.23

[5]

Amir Averbuch, Pekka Neittaanmäki, Valery Zheludev. Periodic spline-based frames for image restoration. Inverse Problems & Imaging, 2015, 9 (3) : 661-707. doi: 10.3934/ipi.2015.9.661

[6]

P. Cerejeiras, M. Ferreira, U. Kähler, F. Sommen. Continuous wavelet transform and wavelet frames on the sphere using Clifford analysis. Communications on Pure & Applied Analysis, 2007, 6 (3) : 619-641. doi: 10.3934/cpaa.2007.6.619

[7]

Song Li, Junhong Lin. Compressed sensing with coherent tight frames via $l_q$-minimization for $0 < q \leq 1$. Inverse Problems & Imaging, 2014, 8 (3) : 761-777. doi: 10.3934/ipi.2014.8.761

[8]

Kazuhiro Sakai. The oe-property of diffeomorphisms. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 581-591. doi: 10.3934/dcds.1998.4.581

[9]

Pablo Sánchez, Jaume Sempere. Conflict, private and communal property. Journal of Dynamics & Games, 2016, 3 (4) : 355-369. doi: 10.3934/jdg.2016019

[10]

Konstantinos Drakakis, Scott Rickard. On the generalization of the Costas property in the continuum. Advances in Mathematics of Communications, 2008, 2 (2) : 113-130. doi: 10.3934/amc.2008.2.113

[11]

Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991

[12]

Peng Sun. Minimality and gluing orbit property. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 4041-4056. doi: 10.3934/dcds.2019162

[13]

Bo Su. Doubling property of elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (1) : 143-147. doi: 10.3934/cpaa.2008.7.143

[14]

Jinjun Li, Min Wu. Generic property of irregular sets in systems satisfying the specification property. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 635-645. doi: 10.3934/dcds.2014.34.635

[15]

Martin Swaczyna, Petr Volný. Uniform motions in central fields. Journal of Geometric Mechanics, 2017, 9 (1) : 91-130. doi: 10.3934/jgm.2017004

[16]

Younghun Hong, Changhun Yang. Uniform Strichartz estimates on the lattice. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3239-3264. doi: 10.3934/dcds.2019134

[17]

Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048

[18]

Se-Hyun Ku. Expansive flows on uniform spaces. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021165

[19]

Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037

[20]

Björn Gebhard. A note concerning a property of symplectic matrices. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2135-2137. doi: 10.3934/cpaa.2018101

2020 Impact Factor: 1.916

Article outline

[Back to Top]