• Previous Article
    Time analyticity of the biharmonic heat equation, the heat equation with potentials and some nonlinear heat equations
  • CPAA Home
  • This Issue
  • Next Article
    On spectral gaps of growth-fragmentation semigroups with mass loss or death
doi: 10.3934/cpaa.2022012
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Asymptotic analysis for the electric field concentration with geometry of the core-shell structure

a. 

Beijing Computational Science Research Center, Beijing 100193, China

b. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Received  June 2021 Revised  November 2021 Early access December 2021

Fund Project: Z. W. Zhao was partially supported by NSFC (11971061) and CPSF (2021M700358)

In the perfect conductivity problem arising from composites, the electric field may become arbitrarily large as $ \varepsilon $, the distance between the inclusions and the matrix boundary, tends to zero. In this paper, by making clear the singular role of the blow-up factor $ Q[\varphi] $ introduced in [27] for some special boundary data of even function type with $ k $-order growth, we prove the optimality of the blow-up rate in the presence of $ m $-convex inclusions close to touching the matrix boundary in all dimensions. Finally, we give closer analysis in terms of the singular behavior of the concentrated field for eccentric and concentric core-shell geometries with circular and spherical boundaries from the practical application angle.

Citation: Zhiwen Zhao. Asymptotic analysis for the electric field concentration with geometry of the core-shell structure. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2022012
References:
[1]

H. AmmariG. CiraoloH. KangH. Lee and K. Yun, Spectral analysis of the Neumann-Poincaré operator and characterization of the stress concentration in anti-plane elasticity, Arch. Ration. Mech. Anal., 208 (2013), 275-304.  doi: 10.1007/s00205-012-0590-8.  Google Scholar

[2]

H. Ammari, H. Kang and M. Lim, Gradient estimates to the conductivity problem, Math. Ann. 332 (2005), 277-286. doi: 10.1007/s00208-004-0626-y.  Google Scholar

[3]

H. AmmariH. KangH. LeeJ. Lee and M. Lim, Optimal estimates for the electric field in two dimensions, J. Math. Pures Appl., 88 (2007), 307-324.  doi: 10.1016/j.matpur.2007.07.005.  Google Scholar

[4]

I. BabuškaB. AnderssonP. Smith and K. Levin, Damage analysis of fiber composites. I. Statistical analysis on fiber scale, Comput. Methods Appl. Mech. Engrg., 172 (1999), 27-77.  doi: 10.1016/S0045-7825(98)00225-4.  Google Scholar

[5]

B. Budiansky and G. F. Carrier, High shear stresses in stiff fiber composites, J. App. Mech., 51 (1984), 733-735.   Google Scholar

[6]

E. BaoY. Y. Li and B. Yin, Gradient estimates for the perfect conductivity problem, Arch. Ration. Mech. Anal., 193 (2009), 195-226.  doi: 10.1007/s00205-008-0159-8.  Google Scholar

[7]

E. BaoY. Y. Li and B. Yin, Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions, Commun. Partial Differ. Equ., 35 (2010), 1982-2006.  doi: 10.1080/03605300903564000.  Google Scholar

[8]

E. Bonnetier and F. Triki, Pointwise bounds on the gradient and the spectrum of the Neumann-Poincaré operator: the case of 2 discs, Multi-scale and high-contrast PDE: from modeling, to mathematical analysis, to inversion, Contemp. Math., 577, Amer. Math. Soc., Providence, RI, 2012, pp. 81–91. doi: 10.1090/conm/577.  Google Scholar

[9]

E. Bonnetier and F. Triki, On the spectrum of the Poincaré variational problem for two close-to-touching inclusions in 2D, Arch. Ration. Mech. Anal., 209 (2013), 541-567.  doi: 10.1007/s00205-013-0636-6.  Google Scholar

[10]

E. Bonnetier and M. Vogelius, An elliptic regularity result for a composite medium with ``touching'' fibers of circular cross-section, SIAM J. Math. Anal., 31 (2000), 651-677.  doi: 10.1137/S0036141098333980.  Google Scholar

[11]

V. M. CaloY. Efendiev and J. Galvis, Asymptotic expansions for high-contrast elliptic equations, Math. Models Methods Appl. Sci., 24 (2014), 465-494.  doi: 10.1142/S0218202513500565.  Google Scholar

[12]

G. Ciraolo and A. Sciammetta, Gradient estimates for the perfect conductivity problem in anisotropic media, J. Math. Pures Appl., 127 (2019), 268-298.  doi: 10.1016/j.matpur.2018.09.006.  Google Scholar

[13]

G. Ciraolo and A. Sciammetta, Stress concentration for closely located inclusions in nonlinear perfect conductivity problems, J. Differ. Equ., 266 (2019), 6149-6178.  doi: 10.1016/j.jde.2018.10.041.  Google Scholar

[14]

H. J. Dong and H. G. Li, Optimal estimates for the conductivity problem by Green's function method, Arch. Ration. Mech. Anal., 231 (2019), 1427-1453.  doi: 10.1007/s00205-018-1301-x.  Google Scholar

[15]

Y. Gorb and A. Novikov, Blow-up of solutions to a $p$-Laplace equation, Multiscale Model. Simul., 10 (2012), 727-743.  doi: 10.1137/110857167.  Google Scholar

[16]

Y. Gorb, Singular behavior of electric field of high-contrast concentrated composites, Multiscale Model. Simul., 13 (2015), 1312-1326.  doi: 10.1137/140982076.  Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1998.  Google Scholar

[18]

J. B. Keller, Stresses in narrow regions, Trans. ASME J. Appl. Mech., 60 (1993), 1054-1056.   Google Scholar

[19]

H. KangM. Lim and K. Yun, Asymptotics and computation of the solution to the conductivity equation in the presence of adjacent inclusions with extreme conductivities, J. Math. Pures Appl., 9 (2013), 234-249.  doi: 10.1016/j.matpur.2012.06.013.  Google Scholar

[20]

H. KangM. Lim and K. Yun, Characterization of the electric field concentration between two adjacent spherical perfect conductors, SIAM J. Appl. Math., 74 (2014), 125-146.  doi: 10.1137/130922434.  Google Scholar

[21]

H. KangH. Lee and K. Yun, Optimal estimates and asymptotics for the stress concentration between closely located stiff inclusions, Math. Ann., 363 (2015), 1281-1306.  doi: 10.1007/s00208-015-1203-2.  Google Scholar

[22]

J. Kim and M. Lim, Electric field concentration in the presence of an inclusion with eccentric core-shell geometry, Math. Ann., 373 (2019), 517-551.  doi: 10.1007/s00208-018-1688-6.  Google Scholar

[23]

J. Lekner, Electrostatics of two charged conducting spheres, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468 (2012), 2829-2848.  doi: 10.1098/rspa.2012.0133.  Google Scholar

[24]

H. G. Li, Y. Y. Li, E. S. Bao and B. Yin, Derivative estimates of solutions of elliptic systems in narrow regions, Quart. Appl. Math. 72 (2014), 589–596. doi: 10.1090/S0033-569X-2014-01339-0.  Google Scholar

[25]

H. G. LiY. Y. Li and Z. L. Yang, Asymptotics of the gradient of solutions to the perfect conductivity problem, Multiscale Model. Simul., 17 (2019), 899-925.  doi: 10.1137/18M1214329.  Google Scholar

[26]

H. G. LiF. Wang and L. J. Xu, Characterization of electric fields between two spherical perfect conductors with general radii in 3D, J. Differ. Equ., 267 (2019), 6644-6690.  doi: 10.1016/j.jde.2019.07.007.  Google Scholar

[27]

H. G. Li and L. J. Xu, Optimal estimates for the perfect conductivity problem with inclusions close to the boundary, SIAM J. Math. Anal., 49 (2017), 3125-3142.  doi: 10.1137/16M1067858.  Google Scholar

[28]

H. G. Li, Asymptotics for the electric field concentration in the perfect conductivity problem, SIAM J. Math. Anal., 52 (2020), 3350-3375.  doi: 10.1137/19M1282623.  Google Scholar

[29]

Y. Y. Li and L. Nirenberg, Estimates for elliptic system from composite material, Commun. Pure Appl. Math., 56 (2003), 892-925.  doi: 10.1002/cpa.10079.  Google Scholar

[30]

Y. Y. Li and M. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Rational Mech. Anal., 153 (2000), 91-151.  doi: 10.1007/s002050000082.  Google Scholar

[31]

M. Lim and K. Yun, Blow-up of electric fields between closely spaced spherical perfect conductors, Commun. Partial Differ. Equ., 34 (2009), 1287-1315.  doi: 10.1080/03605300903079579.  Google Scholar

[32]

K. Yun, Estimates for electric fields blown up between closely adjacent conductors with arbitrary shape, SIAM J. Appl. Math., 67 (2007), 714-730.  doi: 10.1137/060648817.  Google Scholar

[33]

K. Yun, Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross-sections, J. Math. Anal. Appl., 350 (2009), 306-312.  doi: 10.1016/j.jmaa.2008.09.057.  Google Scholar

[34]

Z. W. Zhao and X. Hao, Asymptotics for the concentrated field between closely located hard inclusions in all dimensions, Commun. Pure Appl. Anal., 20 (2021), 2379-2398.  doi: 10.3934/cpaa.2021086.  Google Scholar

show all references

References:
[1]

H. AmmariG. CiraoloH. KangH. Lee and K. Yun, Spectral analysis of the Neumann-Poincaré operator and characterization of the stress concentration in anti-plane elasticity, Arch. Ration. Mech. Anal., 208 (2013), 275-304.  doi: 10.1007/s00205-012-0590-8.  Google Scholar

[2]

H. Ammari, H. Kang and M. Lim, Gradient estimates to the conductivity problem, Math. Ann. 332 (2005), 277-286. doi: 10.1007/s00208-004-0626-y.  Google Scholar

[3]

H. AmmariH. KangH. LeeJ. Lee and M. Lim, Optimal estimates for the electric field in two dimensions, J. Math. Pures Appl., 88 (2007), 307-324.  doi: 10.1016/j.matpur.2007.07.005.  Google Scholar

[4]

I. BabuškaB. AnderssonP. Smith and K. Levin, Damage analysis of fiber composites. I. Statistical analysis on fiber scale, Comput. Methods Appl. Mech. Engrg., 172 (1999), 27-77.  doi: 10.1016/S0045-7825(98)00225-4.  Google Scholar

[5]

B. Budiansky and G. F. Carrier, High shear stresses in stiff fiber composites, J. App. Mech., 51 (1984), 733-735.   Google Scholar

[6]

E. BaoY. Y. Li and B. Yin, Gradient estimates for the perfect conductivity problem, Arch. Ration. Mech. Anal., 193 (2009), 195-226.  doi: 10.1007/s00205-008-0159-8.  Google Scholar

[7]

E. BaoY. Y. Li and B. Yin, Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions, Commun. Partial Differ. Equ., 35 (2010), 1982-2006.  doi: 10.1080/03605300903564000.  Google Scholar

[8]

E. Bonnetier and F. Triki, Pointwise bounds on the gradient and the spectrum of the Neumann-Poincaré operator: the case of 2 discs, Multi-scale and high-contrast PDE: from modeling, to mathematical analysis, to inversion, Contemp. Math., 577, Amer. Math. Soc., Providence, RI, 2012, pp. 81–91. doi: 10.1090/conm/577.  Google Scholar

[9]

E. Bonnetier and F. Triki, On the spectrum of the Poincaré variational problem for two close-to-touching inclusions in 2D, Arch. Ration. Mech. Anal., 209 (2013), 541-567.  doi: 10.1007/s00205-013-0636-6.  Google Scholar

[10]

E. Bonnetier and M. Vogelius, An elliptic regularity result for a composite medium with ``touching'' fibers of circular cross-section, SIAM J. Math. Anal., 31 (2000), 651-677.  doi: 10.1137/S0036141098333980.  Google Scholar

[11]

V. M. CaloY. Efendiev and J. Galvis, Asymptotic expansions for high-contrast elliptic equations, Math. Models Methods Appl. Sci., 24 (2014), 465-494.  doi: 10.1142/S0218202513500565.  Google Scholar

[12]

G. Ciraolo and A. Sciammetta, Gradient estimates for the perfect conductivity problem in anisotropic media, J. Math. Pures Appl., 127 (2019), 268-298.  doi: 10.1016/j.matpur.2018.09.006.  Google Scholar

[13]

G. Ciraolo and A. Sciammetta, Stress concentration for closely located inclusions in nonlinear perfect conductivity problems, J. Differ. Equ., 266 (2019), 6149-6178.  doi: 10.1016/j.jde.2018.10.041.  Google Scholar

[14]

H. J. Dong and H. G. Li, Optimal estimates for the conductivity problem by Green's function method, Arch. Ration. Mech. Anal., 231 (2019), 1427-1453.  doi: 10.1007/s00205-018-1301-x.  Google Scholar

[15]

Y. Gorb and A. Novikov, Blow-up of solutions to a $p$-Laplace equation, Multiscale Model. Simul., 10 (2012), 727-743.  doi: 10.1137/110857167.  Google Scholar

[16]

Y. Gorb, Singular behavior of electric field of high-contrast concentrated composites, Multiscale Model. Simul., 13 (2015), 1312-1326.  doi: 10.1137/140982076.  Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1998.  Google Scholar

[18]

J. B. Keller, Stresses in narrow regions, Trans. ASME J. Appl. Mech., 60 (1993), 1054-1056.   Google Scholar

[19]

H. KangM. Lim and K. Yun, Asymptotics and computation of the solution to the conductivity equation in the presence of adjacent inclusions with extreme conductivities, J. Math. Pures Appl., 9 (2013), 234-249.  doi: 10.1016/j.matpur.2012.06.013.  Google Scholar

[20]

H. KangM. Lim and K. Yun, Characterization of the electric field concentration between two adjacent spherical perfect conductors, SIAM J. Appl. Math., 74 (2014), 125-146.  doi: 10.1137/130922434.  Google Scholar

[21]

H. KangH. Lee and K. Yun, Optimal estimates and asymptotics for the stress concentration between closely located stiff inclusions, Math. Ann., 363 (2015), 1281-1306.  doi: 10.1007/s00208-015-1203-2.  Google Scholar

[22]

J. Kim and M. Lim, Electric field concentration in the presence of an inclusion with eccentric core-shell geometry, Math. Ann., 373 (2019), 517-551.  doi: 10.1007/s00208-018-1688-6.  Google Scholar

[23]

J. Lekner, Electrostatics of two charged conducting spheres, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468 (2012), 2829-2848.  doi: 10.1098/rspa.2012.0133.  Google Scholar

[24]

H. G. Li, Y. Y. Li, E. S. Bao and B. Yin, Derivative estimates of solutions of elliptic systems in narrow regions, Quart. Appl. Math. 72 (2014), 589–596. doi: 10.1090/S0033-569X-2014-01339-0.  Google Scholar

[25]

H. G. LiY. Y. Li and Z. L. Yang, Asymptotics of the gradient of solutions to the perfect conductivity problem, Multiscale Model. Simul., 17 (2019), 899-925.  doi: 10.1137/18M1214329.  Google Scholar

[26]

H. G. LiF. Wang and L. J. Xu, Characterization of electric fields between two spherical perfect conductors with general radii in 3D, J. Differ. Equ., 267 (2019), 6644-6690.  doi: 10.1016/j.jde.2019.07.007.  Google Scholar

[27]

H. G. Li and L. J. Xu, Optimal estimates for the perfect conductivity problem with inclusions close to the boundary, SIAM J. Math. Anal., 49 (2017), 3125-3142.  doi: 10.1137/16M1067858.  Google Scholar

[28]

H. G. Li, Asymptotics for the electric field concentration in the perfect conductivity problem, SIAM J. Math. Anal., 52 (2020), 3350-3375.  doi: 10.1137/19M1282623.  Google Scholar

[29]

Y. Y. Li and L. Nirenberg, Estimates for elliptic system from composite material, Commun. Pure Appl. Math., 56 (2003), 892-925.  doi: 10.1002/cpa.10079.  Google Scholar

[30]

Y. Y. Li and M. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Rational Mech. Anal., 153 (2000), 91-151.  doi: 10.1007/s002050000082.  Google Scholar

[31]

M. Lim and K. Yun, Blow-up of electric fields between closely spaced spherical perfect conductors, Commun. Partial Differ. Equ., 34 (2009), 1287-1315.  doi: 10.1080/03605300903079579.  Google Scholar

[32]

K. Yun, Estimates for electric fields blown up between closely adjacent conductors with arbitrary shape, SIAM J. Appl. Math., 67 (2007), 714-730.  doi: 10.1137/060648817.  Google Scholar

[33]

K. Yun, Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross-sections, J. Math. Anal. Appl., 350 (2009), 306-312.  doi: 10.1016/j.jmaa.2008.09.057.  Google Scholar

[34]

Z. W. Zhao and X. Hao, Asymptotics for the concentrated field between closely located hard inclusions in all dimensions, Commun. Pure Appl. Anal., 20 (2021), 2379-2398.  doi: 10.3934/cpaa.2021086.  Google Scholar

Figure 1.  Eccentric circles
Figure 2.  Concentric circles
[1]

Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443

[2]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[3]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[4]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[5]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[6]

Pierpaolo Esposito, Maristella Petralla. Symmetries and blow-up phenomena for a Dirichlet problem with a large parameter. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1935-1957. doi: 10.3934/cpaa.2012.11.1935

[7]

Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete & Continuous Dynamical Systems, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271

[8]

Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete & Continuous Dynamical Systems, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1

[9]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[10]

Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020

[11]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[12]

Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155

[13]

W. Edward Olmstead, Colleen M. Kirk, Catherine A. Roberts. Blow-up in a subdiffusive medium with advection. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1655-1667. doi: 10.3934/dcds.2010.28.1655

[14]

Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691

[15]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[16]

José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43

[17]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[18]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[19]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[20]

Dongho Chae. On the blow-up problem for the Euler equations and the Liouville type results in the fluid equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1139-1150. doi: 10.3934/dcdss.2013.6.1139

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (38)
  • HTML views (25)
  • Cited by (0)

Other articles
by authors

[Back to Top]