doi: 10.3934/cpaa.2022013
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Analysis and asymptotic reduction of a bulk-surface reaction-diffusion model of Gierer-Meinhardt type

1. 

Institute of Applied Mathematics (LS Ⅲ), TU Dortmund University, Vogelpothsweg 87, D-44227 Dortmund, Germany

2. 

AG Biomathematik, TU Dortmund University, Vogelpothsweg 87, D-44227 Dortmund, Germany

* Corresponding author

Received  June 2021 Revised  October 2021 Early access December 2021

We consider a Gierer-Meinhardt system on a surface coupled with a parabolic PDE in the bulk, the domain confined by this surface. Such a model was recently proposed and analyzed for two-dimensional bulk domains by Gomez, Ward and Wei (SIAM J. Appl. Dyn. Syst. 18, 2019). We prove the well-posedness of the bulk-surface system in arbitrary space dimensions and show that solutions remain uniformly bounded in parabolic Hölder spaces for all times. The cytosolic diffusion is typically much larger than the lateral diffusion on the membrane. This motivates to a corresponding asymptotic reduction, which consists of a nonlocal system on the membrane. We prove the convergence of solutions of the full system towards unique solutions of the reduction.

Citation: Jan-Phillip Bäcker, Matthias Röger. Analysis and asymptotic reduction of a bulk-surface reaction-diffusion model of Gierer-Meinhardt type. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2022013
References:
[1]

K. Anguige, Multi-phase Stefan problems for a non-linear one-dimensional model of cell-to-cell adhesion and diffusion, European J. Appl. Math., 21 (2010), 109-136.  doi: 10.1017/S0956792509990167.  Google Scholar

[2]

K. Anguige and M. Röger, Global existence for a bulk/surface model for active-transport-induced polarisation in biological cells, J. Math. Anal. Appl., 448 (2017), 213-244.  doi: 10.1016/j.jmaa.2016.10.072.  Google Scholar

[3]

T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations, in Grundlehren der Mathematischen Wissenschaften., Springer, New York, 1982. doi: 10.1007/978-1-4612-5734-9.  Google Scholar

[4]

C. Berding and H. Haken, Pattern formation in morphogenesis. Analytical treatment of the Gierer- Meinhardt model on a sphere, J. Math. Biol., 14 (1982), 133-151.  doi: 10.1007/BF01832840.  Google Scholar

[5]

D. BotheM. KöhneS. Maier and J. Saal, Global strong solutions for a class of heterogeneous catalysis models, J. Math. Anal. Appl., 445 (2017), 677-709.  doi: 10.1016/j.jmaa.2016.08.016.  Google Scholar

[6]

H. Brezis and P. Mironescu, Gagliardo-Nirenberg inequalities and non-inequalities: the full story, Ann. I. H. Poincare-An., 35 (2018), 1355-1376.  doi: 10.1016/j.anihpc.2017.11.007.  Google Scholar

[7]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[8]

K. Disser, Global existence, uniqueness and stability for nonlinear dissipative bulk-interface interaction systems, J. Differ. Equ., 269 (2020), 4023-4044.  doi: 10.1016/j.jde.2020.03.021.  Google Scholar

[9]

C. M. ElliottT. Ranner and C. Venkataraman, Coupled bulk-surface free boundary problems arising from a mathematical model of receptor-ligand dynamics, SIAM J. Math. Anal., 49 (2017), 360-397.  doi: 10.1137/15M1050811.  Google Scholar

[10]

K. FellnerE. Latos and B. Q. Tang, Well-posedness and exponential equilibration of a volume-surface reaction-diffusion system with nonlinear boundary coupling, Ann. I. H. Poincare-An., 35 (2018), 643-673.  doi: 10.1016/j.anihpc.2017.07.002.  Google Scholar

[11]

H. GarckeJ. KampmannA. Rätz and M. Röger, A coupled surface-Cahn-Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes, Math. Models Methods Appl. Sci., 26 (2016), 1149-1189.  doi: 10.1142/S0218202516500275.  Google Scholar

[12]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Biol. Cyber., 12 (1972), 30-39.   Google Scholar

[13]

D. GomezM. J. Ward and J. Wei, The linear stability of symmetric spike patterns for a bulk-membrane coupled Gierer-Meinhardt model, SIAM J. Appl. Dyn. Syst., 18 (2019), 729-768.  doi: 10.1137/18M1222338.  Google Scholar

[14]

J. K. Hale and K. Sakamoto, Shadow systems and attractors in reaction-diffusion equations, Appl. Anal., 32 (1989), 287-303.  doi: 10.1080/00036818908839855.  Google Scholar

[15]

S. Hausberg and M. Röger, Well-posedness and fast-diffusion limit for a bulk–surface reaction–diffusion system, Nonlinear Differ. Equ. Appl., 25 (2018), 32 pp. doi: 10.1007/s00030-018-0508-8.  Google Scholar

[16]

N. I. Kavallaris and T. Suzuki, On the dynamics of a non-local parabolic equation arising from the gierer–meinhardt system, arXiv: 1605.04083.  Google Scholar

[17]

J. P. Keener, Activators and inhibitors in pattern formation, Stud. Appl. Math., 59 (1978), 1-23.  doi: 10.1002/sapm19785911.  Google Scholar

[18]

B. N. KholodenkoJ. B. Hoek and H. V. Westerhoff, Why cytoplasmic signalling proteins should be recruited to cell membranes, Trends Cell Biol., 10 (2000), 173-178.   Google Scholar

[19]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968.  Google Scholar

[20]

T. Lamm, Biharmonischer Wärmefluß, Diplomarbeit, Universität Freiburg, Mathematisches Institut, 2001. https://www.math.kit.edu/iana1/~lamm/media/dipl.pdf. Google Scholar

[21]

H. Levine and W. J. Rappel, Membrane-bound Turing patterns, Phys. Rev. E, 72 (2005), 5 pp. doi: 10.1103/PhysRevE.72.061912.  Google Scholar

[22]

F. Li and W. M. Ni, On the global existence and finite time blow-up of shadow systems, J. Differ. Equ., 247 (2009), 1762-1776.  doi: 10.1016/j.jde.2009.04.009.  Google Scholar

[23]

A. Marciniak-CzochraS. HärtingG. Karch and K. Suzuki, Dynamical spike solutions in a nonlocal model of pattern formation, Nonlinearity, 31 (2018), 1757-1781.  doi: 10.1088/1361-6544/aaa5dc.  Google Scholar

[24]

K. Masuda and K. Takahashi, Reaction-diffusion systems in the gierer-meinhardt theory of biological pattern formation, Japan J. Appl. Math., 4 (1987), 47-58.  doi: 10.1007/BF03167754.  Google Scholar

[25]

A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions, Discret. Contin. Dynam. Syst. Series S, 6 (2013), 479-499.  doi: 10.3934/dcdss.2013.6.479.  Google Scholar

[26]

W. M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Am. Math. Soc., 45 (1998), 9-18.   Google Scholar

[27]

We i-Ming Ni and Iz umi Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type, Trans. Am. Math. Soc., 297 (1986), 351-368.  doi: 10.2307/2000473.  Google Scholar

[28]

I. L. NovakF. GaoY.-S. ChoiD. ResascoJ. C. Schaff and B. M. Slepchenko, Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology, J. Comput. Phys., 226 (2007), 1271-1290.  doi: 10.1016/j.jcp.2007.05.025.  Google Scholar

[29]

F. Rothe, Global solutions of reaction-diffusion systems., volume 1072, Springer, Cham, 1984. doi: 10.1007/BFb0099278.  Google Scholar

[30]

T. Roubíček, Nonlinear partial differential equations with applications, volume 153 of International Series of Numerical Mathematics, Birkhäuser/Springer Basel AG, Basel, second edition, 2013. doi: 10.1007/978-3-0348-0513-1.  Google Scholar

[31]

A. Rätz and M. Röger, Symmetry breaking in a bulk-surface reaction-diffusion model for signaling networks, arXiv: 1305.6172v1.  Google Scholar

[32]

V. Sharma and J. Morgan, Global existence of solutions to reaction-diffusion systems with mass transport type boundary conditions, SIAM J. Math. Anal., 48 (2016), 4202-4240.  doi: 10.1137/15M1015145.  Google Scholar

[33]

M. E. Taylor, Partial differential equations Ⅲ, in Applied Mathematical Sciences, Springer, New York, second edition, 2011. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[34]

K. E. TeigenX. LiJ. LowengrubF. Wang and A. Voigt, A diffusion-interface approach for modelling transport, diffusion and adsorption/desorption of material quantities on a deformable interface, Commun. Math. Sci., 7 (2009), 1009-1037.   Google Scholar

[35]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.   Google Scholar

[36]

J. Wei, On single interior spike solutions of the Gierer-Meinhardt system: Uniqueness and spectrum estimates, Eur. J. Appl. Math., 10 (1999), 353-378.  doi: 10.1017/S0956792599003770.  Google Scholar

[37]

Z. Wu, J. Yin and C. Wang, Elliptic and Parabolic Equations, World Scientific, 2006. Google Scholar

show all references

References:
[1]

K. Anguige, Multi-phase Stefan problems for a non-linear one-dimensional model of cell-to-cell adhesion and diffusion, European J. Appl. Math., 21 (2010), 109-136.  doi: 10.1017/S0956792509990167.  Google Scholar

[2]

K. Anguige and M. Röger, Global existence for a bulk/surface model for active-transport-induced polarisation in biological cells, J. Math. Anal. Appl., 448 (2017), 213-244.  doi: 10.1016/j.jmaa.2016.10.072.  Google Scholar

[3]

T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations, in Grundlehren der Mathematischen Wissenschaften., Springer, New York, 1982. doi: 10.1007/978-1-4612-5734-9.  Google Scholar

[4]

C. Berding and H. Haken, Pattern formation in morphogenesis. Analytical treatment of the Gierer- Meinhardt model on a sphere, J. Math. Biol., 14 (1982), 133-151.  doi: 10.1007/BF01832840.  Google Scholar

[5]

D. BotheM. KöhneS. Maier and J. Saal, Global strong solutions for a class of heterogeneous catalysis models, J. Math. Anal. Appl., 445 (2017), 677-709.  doi: 10.1016/j.jmaa.2016.08.016.  Google Scholar

[6]

H. Brezis and P. Mironescu, Gagliardo-Nirenberg inequalities and non-inequalities: the full story, Ann. I. H. Poincare-An., 35 (2018), 1355-1376.  doi: 10.1016/j.anihpc.2017.11.007.  Google Scholar

[7]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[8]

K. Disser, Global existence, uniqueness and stability for nonlinear dissipative bulk-interface interaction systems, J. Differ. Equ., 269 (2020), 4023-4044.  doi: 10.1016/j.jde.2020.03.021.  Google Scholar

[9]

C. M. ElliottT. Ranner and C. Venkataraman, Coupled bulk-surface free boundary problems arising from a mathematical model of receptor-ligand dynamics, SIAM J. Math. Anal., 49 (2017), 360-397.  doi: 10.1137/15M1050811.  Google Scholar

[10]

K. FellnerE. Latos and B. Q. Tang, Well-posedness and exponential equilibration of a volume-surface reaction-diffusion system with nonlinear boundary coupling, Ann. I. H. Poincare-An., 35 (2018), 643-673.  doi: 10.1016/j.anihpc.2017.07.002.  Google Scholar

[11]

H. GarckeJ. KampmannA. Rätz and M. Röger, A coupled surface-Cahn-Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes, Math. Models Methods Appl. Sci., 26 (2016), 1149-1189.  doi: 10.1142/S0218202516500275.  Google Scholar

[12]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Biol. Cyber., 12 (1972), 30-39.   Google Scholar

[13]

D. GomezM. J. Ward and J. Wei, The linear stability of symmetric spike patterns for a bulk-membrane coupled Gierer-Meinhardt model, SIAM J. Appl. Dyn. Syst., 18 (2019), 729-768.  doi: 10.1137/18M1222338.  Google Scholar

[14]

J. K. Hale and K. Sakamoto, Shadow systems and attractors in reaction-diffusion equations, Appl. Anal., 32 (1989), 287-303.  doi: 10.1080/00036818908839855.  Google Scholar

[15]

S. Hausberg and M. Röger, Well-posedness and fast-diffusion limit for a bulk–surface reaction–diffusion system, Nonlinear Differ. Equ. Appl., 25 (2018), 32 pp. doi: 10.1007/s00030-018-0508-8.  Google Scholar

[16]

N. I. Kavallaris and T. Suzuki, On the dynamics of a non-local parabolic equation arising from the gierer–meinhardt system, arXiv: 1605.04083.  Google Scholar

[17]

J. P. Keener, Activators and inhibitors in pattern formation, Stud. Appl. Math., 59 (1978), 1-23.  doi: 10.1002/sapm19785911.  Google Scholar

[18]

B. N. KholodenkoJ. B. Hoek and H. V. Westerhoff, Why cytoplasmic signalling proteins should be recruited to cell membranes, Trends Cell Biol., 10 (2000), 173-178.   Google Scholar

[19]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968.  Google Scholar

[20]

T. Lamm, Biharmonischer Wärmefluß, Diplomarbeit, Universität Freiburg, Mathematisches Institut, 2001. https://www.math.kit.edu/iana1/~lamm/media/dipl.pdf. Google Scholar

[21]

H. Levine and W. J. Rappel, Membrane-bound Turing patterns, Phys. Rev. E, 72 (2005), 5 pp. doi: 10.1103/PhysRevE.72.061912.  Google Scholar

[22]

F. Li and W. M. Ni, On the global existence and finite time blow-up of shadow systems, J. Differ. Equ., 247 (2009), 1762-1776.  doi: 10.1016/j.jde.2009.04.009.  Google Scholar

[23]

A. Marciniak-CzochraS. HärtingG. Karch and K. Suzuki, Dynamical spike solutions in a nonlocal model of pattern formation, Nonlinearity, 31 (2018), 1757-1781.  doi: 10.1088/1361-6544/aaa5dc.  Google Scholar

[24]

K. Masuda and K. Takahashi, Reaction-diffusion systems in the gierer-meinhardt theory of biological pattern formation, Japan J. Appl. Math., 4 (1987), 47-58.  doi: 10.1007/BF03167754.  Google Scholar

[25]

A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions, Discret. Contin. Dynam. Syst. Series S, 6 (2013), 479-499.  doi: 10.3934/dcdss.2013.6.479.  Google Scholar

[26]

W. M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Am. Math. Soc., 45 (1998), 9-18.   Google Scholar

[27]

We i-Ming Ni and Iz umi Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type, Trans. Am. Math. Soc., 297 (1986), 351-368.  doi: 10.2307/2000473.  Google Scholar

[28]

I. L. NovakF. GaoY.-S. ChoiD. ResascoJ. C. Schaff and B. M. Slepchenko, Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology, J. Comput. Phys., 226 (2007), 1271-1290.  doi: 10.1016/j.jcp.2007.05.025.  Google Scholar

[29]

F. Rothe, Global solutions of reaction-diffusion systems., volume 1072, Springer, Cham, 1984. doi: 10.1007/BFb0099278.  Google Scholar

[30]

T. Roubíček, Nonlinear partial differential equations with applications, volume 153 of International Series of Numerical Mathematics, Birkhäuser/Springer Basel AG, Basel, second edition, 2013. doi: 10.1007/978-3-0348-0513-1.  Google Scholar

[31]

A. Rätz and M. Röger, Symmetry breaking in a bulk-surface reaction-diffusion model for signaling networks, arXiv: 1305.6172v1.  Google Scholar

[32]

V. Sharma and J. Morgan, Global existence of solutions to reaction-diffusion systems with mass transport type boundary conditions, SIAM J. Math. Anal., 48 (2016), 4202-4240.  doi: 10.1137/15M1015145.  Google Scholar

[33]

M. E. Taylor, Partial differential equations Ⅲ, in Applied Mathematical Sciences, Springer, New York, second edition, 2011. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[34]

K. E. TeigenX. LiJ. LowengrubF. Wang and A. Voigt, A diffusion-interface approach for modelling transport, diffusion and adsorption/desorption of material quantities on a deformable interface, Commun. Math. Sci., 7 (2009), 1009-1037.   Google Scholar

[35]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.   Google Scholar

[36]

J. Wei, On single interior spike solutions of the Gierer-Meinhardt system: Uniqueness and spectrum estimates, Eur. J. Appl. Math., 10 (1999), 353-378.  doi: 10.1017/S0956792599003770.  Google Scholar

[37]

Z. Wu, J. Yin and C. Wang, Elliptic and Parabolic Equations, World Scientific, 2006. Google Scholar

[1]

Joseph G. Yan, Dong-Ming Hwang. Pattern formation in reaction-diffusion systems with $D_2$-symmetric kinetics. Discrete & Continuous Dynamical Systems, 1996, 2 (2) : 255-270. doi: 10.3934/dcds.1996.2.255

[2]

Mengxin Chen, Ranchao Wu, Yancong Xu. Dynamics of a depletion-type Gierer-Meinhardt model with Langmuir-Hinshelwood reaction scheme. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021132

[3]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[4]

Theodore Kolokolnikov, Michael J. Ward. Bifurcation of spike equilibria in the near-shadow Gierer-Meinhardt model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1033-1064. doi: 10.3934/dcdsb.2004.4.1033

[5]

Juncheng Wei, Matthias Winter. On the Gierer-Meinhardt system with precursors. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 363-398. doi: 10.3934/dcds.2009.25.363

[6]

Manuel del Pino, Patricio Felmer, Michal Kowalczyk. Boundary spikes in the Gierer-Meinhardt system. Communications on Pure & Applied Analysis, 2002, 1 (4) : 437-456. doi: 10.3934/cpaa.2002.1.437

[7]

Henghui Zou. On global existence for the Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 583-591. doi: 10.3934/dcds.2015.35.583

[8]

Kazuhiro Kurata, Kotaro Morimoto. Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1443-1482. doi: 10.3934/cpaa.2008.7.1443

[9]

Yuncheng You. Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1415-1445. doi: 10.3934/cpaa.2011.10.1415

[10]

Nabil T. Fadai, Michael J. Ward, Juncheng Wei. A time-delay in the activator kinetics enhances the stability of a spike solution to the gierer-meinhardt model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1431-1458. doi: 10.3934/dcdsb.2018158

[11]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2022, 27 (2) : 1163-1178. doi: 10.3934/dcdsb.2021085

[12]

Hongyan Zhang, Siyu Liu, Yue Zhang. Dynamics and spatiotemporal pattern formations of a homogeneous reaction-diffusion Thomas model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1149-1164. doi: 10.3934/dcdss.2017062

[13]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[14]

Shin-Ichiro Ei, Kota Ikeda, Yasuhito Miyamoto. Dynamics of a boundary spike for the shadow Gierer-Meinhardt system. Communications on Pure & Applied Analysis, 2012, 11 (1) : 115-145. doi: 10.3934/cpaa.2012.11.115

[15]

Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885

[16]

Siu-Long Lei. Adaptive method for spike solutions of Gierer-Meinhardt system on irregular domain. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 651-668. doi: 10.3934/dcdsb.2011.15.651

[17]

Kota Ikeda. The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system. Networks & Heterogeneous Media, 2013, 8 (1) : 291-325. doi: 10.3934/nhm.2013.8.291

[18]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[19]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[20]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

2020 Impact Factor: 1.916

Article outline

[Back to Top]