We give a general theory on well-posedness and time asymptotics for growth fragmentation equations in $ L^{1} $ spaces. We prove first generation of $ C_{0} $-semigroups governing them for unbounded total fragmentation rate and fragmentation kernel $ b(.,.) $ such that $ \int_{0}^{y}xb(x,y)dx = y-\eta (y)y $ ($ 0\leq \eta (y)\leq 1 $ expresses the mass loss) and continuous growth rate $ r(.) $ such that $ \int_{0}^{\infty }\frac{1}{r(\tau )}d\tau = +\infty . $This is done in the spaces of finite mass or finite mass and number of agregates. Generation relies on unbounded perturbation theory peculiar to positive semigroups in $ L^{1} $ spaces. Secondly, we show that the semigroup has a spectral gap and asynchronous exponential growth. The analysis relies on weak compactness tools and Frobenius theory of positive operators. A systematic functional analytic construction is provided.
Citation: |
[1] |
O. Arino and R. Rudnicki, Stability of phytoplankton dynamics, C. R. Biol., 327 (2004), 961–969.
![]() |
[2] |
J. Banasiak, On conservativity and shattering for an equation of phytoplankton dynamics, C. R. Biol., 327 (2004), 1025-1036.
![]() |
[3] |
J. Banasiak, K. Pichór and R. Rudnicki, Asynchronous exponential growth of a general structured population model, Acta. Appl. Math., 119 (2012), 149–166.
doi: 10.1007/s10440-011-9666-y.![]() ![]() ![]() ![]() |
[4] |
J. Banasiak, W. Lamb and Ph. Laurençot., Analytic Methods for Coagulation-Fragmentation Models, Vol Ⅰ, CRC Press, 2019.
![]() ![]() |
[5] |
J. Banasiak and W. Lamb, Growth-fragmentation-coagulation equations with unbounded coagulation kernels, Phil. Trans. Roy. Soc. A, 378 (2020), 20190612.
doi: 10.1098/rsta.2019.0612.![]() ![]() ![]() ![]() |
[6] |
E. Bernard and P. Gabriel, Asymptotic behavior of the growth-fragmentation equation with bounded fragmentation rate, J. Funct. Anal., 272 (2017), 3455–3485.
doi: 10.1016/j.jfa.2017.01.009.![]() ![]() ![]() ![]() |
[7] |
E. Bernard and P. Gabriel, Asynchronous exponential growth of the growth-fragmentation equation with unbounded fragmentation rate, J. Evol. Equ., 20 (2020), 375–401.
doi: 10.1007/s00028-019-00526-4.![]() ![]() ![]() ![]() |
[8] |
J. A. Cañizo, P. Gabriel and H. Yoldasz, Spectral gap for the growth-fragmentation equation via Harris's Theorem, SIAM J. Math. Anal., 53 (2021), 5185-5214.
doi: 10.1137/20M1338654.![]() ![]() ![]() |
[9] |
J. Bertoin and A. R. Watson, A probabilistic approach to spectral analysis of growth-fragmentation equations, J. Funct. Anal., 274 (2018), 2163-2204.
doi: 10.1016/j.jfa.2018.01.014.![]() ![]() ![]() |
[10] |
B. Davies, One-parameter Semigroups, Academic Press, 1980.
![]() ![]() |
[11] |
W. Desch, Perturbations of positive semigroups in AL-spaces; unpublished manuscript, 1988.,
![]() |
[12] |
O. Diekmann, H. J. A. M. Heijmans and H. R. Thieme, On the stability of the cell size distribution, J. Math. Biol, 19 (1984), 227–248.
doi: 10.1007/BF00277748.![]() ![]() ![]() ![]() |
[13] |
K. J. Engel and R. Nagel, One-Parameter Semigroups for linear evolution equations, Graduate Texts in Mathematics 194, Springer-Verlag, 2000.
![]() ![]() |
[14] |
H. Engler, J. Prüss and G. F. Webb, Analysis of a model for the dynamics of prions, II, J. Math. Anal. Appl., 324 (2006), 98-117.
doi: 10.1016/j.jmaa.2005.11.021.![]() ![]() ![]() |
[15] |
P. Gabriel and M. Doumic Jauffret, Eigenelements of a general agregation-fragmentation model, Math. Models Methods Appl. Sci., 20 (2010), 757-783.
doi: 10.1142/S021820251000443X.![]() ![]() ![]() ![]() |
[16] |
J. Huang, B. F Edwards and A. D Levine, General solutions and scaling violation for fragmentation with mass loss, J. Phys. A, 24 (1991), 3967-3977.
![]() |
[17] |
T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math., 6 (1958), 261-322.
doi: 10.1007/BF02790238.![]() ![]() ![]() |
[18] |
Ph. Laurençot and B. Perthame, Exponential decay for the growth-fragmentation/ Cell-Division equation, Commun. Math. Sci, 7 (2009), 503-510.
![]() ![]() |
[19] |
I. Marek, Frobenius theory of positive operators: Comparison theorems and applications, SIAM J. Appl. Math., 19 (1970), 607-628.
doi: 10.1137/0119060.![]() ![]() ![]() |
[20] |
J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Springer Lecture Notes in Biomathematics, Springer, New York, 1986.
doi: 10.1007/978-3-642-93287-8_2.![]() ![]() ![]() ![]() |
[21] |
P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl., 84 (2005), 1235–1260.
doi: 10.1016/j.matpur.2005.04.001.![]() ![]() ![]() ![]() |
[22] |
S. Mischler and J. Scher, Spectral analysis of semigroups and growth-fragmentation equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 849-898.
doi: 10.1016/j.anihpc.2015.01.007.![]() ![]() ![]() |
[23] |
M. Mokhtar-Kharroubi, Mathematical Topics in Neutron Transport Theory. New Aspects, Series on Adv in Math for Appl Sci, World Scientific, 1997.
doi: 10.1142/9789812819833.![]() ![]() ![]() ![]() |
[24] |
M. Mokhtar-Kharroubi, On the convex compactness property for the strong operator topology and related topics, Math. Methods Appl. Sci., 27 (2004), 687-701.
doi: 10.1002/mma.497.![]() ![]() ![]() |
[25] |
M. Mokhtar-Kharroubi, On $L^{1}$ spectral theory of neutron transport, Differ. Integral Equ., 11 (2005), 1221-1242.
![]() ![]() |
[26] |
M. Mokhtar-Kharroubi, On $L^{1}$ exponential trend to equilibrium for conservative linear kinetic equations on the torus, J. Funct. Anal., 266 (2014), 6418-6455.
doi: 10.1016/j.jfa.2014.03.019.![]() ![]() ![]() |
[27] |
M. Mokhtar-Kharroubi and J. Voigt, On honesty of perturbed substochastic $C_{0}$-semigroups in $L^{1}$-spaces, J. Op. Th, 64 (2010), 131–147.
![]() ![]() |
[28] |
M. Mokhtar-Kharroubi, Compactness properties of perturbed sub-stochastic $C_{0}$-semigroups on $L^{1}(\mu)$ with applications to discreteness and spectral gaps, Mém. Soc. Math. Fr, (2016), 80 pp.
![]() ![]() |
[29] |
M. Mokhtar-Kharroubi and Q. Richard, Time asymptotics of structured populations with diffusion and dynamic boundary conditions, Discrete and Cont Dyn Syst, Series B, 23 (2018), 4087–4116.
doi: 10.3934/dcdsb.2018127.![]() ![]() ![]() ![]() |
[30] |
M. Mokhtar-Kharroubi and Q. Richard, Spectral theory and time asymptotics of size-structured two-phase population models, Discrete and Cont Dyn Syst, Series B, 25 (2020), 2969–3004.
doi: 10.3934/dcdsb.2020048.![]() ![]() ![]() ![]() |
[31] |
M. Mokhtar-Kharroubi, Spectra of structured diffusive population equations with generalized Wentzell-Robin boundary conditions and related topics, Discrete and Cont Dyn Syst, Series S, 13 (2020), 3551–3563.
doi: 10.3934/dcdss.2020244.![]() ![]() ![]() ![]() |
[32] |
M. Mokhtar-Kharroubi, On spectral gaps of growth-fragmentation semigroups with mass loss or death, Preprint, hal-02962550, 2020.
![]() |
[33] |
M. Mokhtar-Kharroubi and J. Banasiak, On spectral gaps of growth-fragmentation semigroups in higher moment spaces, Kinetic & Related Models, to appear.
![]() |
[34] |
R. Nagel (Ed), One-Parameter Semigroups of Positive Operators, Springer-Verlag Berlin, 1986.
doi: 10.1007/BFb0074922.![]() ![]() ![]() ![]() |
[35] |
B. Perthame, Transport Equations in Biology. Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007.
![]() ![]() |
[36] |
G. Schluchtermann, On weakly compact operators, Math. Ann., 292 (1992), 263-266.
doi: 10.1007/BF01444620.![]() ![]() ![]() |
[37] |
J. Voigt, On resolvent positive operators and positive $ C_{0}$-semigroups on AL-spaces, Semigroup Forum, 38 (1989), 263-266.
doi: 10.1007/BF02573236.![]() ![]() ![]() |
[38] |
G. F. Webb, An operator-theoretic formulation of asynchronous exponential growth, Trans. Amer. Math. Soc., 303 (1987), 751-763.
doi: 10.2307/2000695.![]() ![]() ![]() |