-
Previous Article
On the reducibility of analytic quasi-periodic systems with Liouvillean basic frequencies
- CPAA Home
- This Issue
-
Next Article
Periodic solution and extinction in a periodic chemostat model with delay in microorganism growth
Schauder type estimates for degenerate Kolmogorov equations with Dini continuous coefficients
1. | Università degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, via Campi 213/b, 41125 Modena, Italy |
2. | Università di Napoli Federico II, Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Via Claudio 25, 80125 Napoli, Italy |
$ {{\mathbb {R}}}^{N+1} $ |
$ \begin{equation*} \mathscr{L} u : = \sum\limits_{j,k = 1}^{m} a_{jk}\partial_{x_j x_k}^2 u + \sum\limits_{j,k = 1}^{N} b_{jk}x_k \partial_{x_j} u - \partial_t u, \end{equation*} $ |
$ A = \left( a_{jk} \right)_{j,k = 1, \dots, m}, B = \left( b_{jk} \right)_{j,k = 1, \dots, N} $ |
$ A $ |
$ {\mathscr{L}} $ |
$ f $ |
$ u $ |
$ {\mathscr{L}} u = f $ |
$ a_{jk} $ |
$ {\mathscr{L}} u = f $ |
$ u $ |
References:
[1] |
F. Anceschi and S. Polidoro,
A survey on the classical theory for Kolmogorov equation, Matematiche (Catania), 75 (2020), 221-258.
doi: 10.4418/2020.75.1.11. |
[2] |
G. Arena, A. O. Caruso and A. Causa,
Taylor formula on step two Carnot groups, Rev. Mat. Iberoam., 26 (2010), 239-259.
doi: 10.4171/RMI/600. |
[3] |
A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, in Springer Monographs in Mathematics, Springer, Berlin, 2007. |
[4] |
A. Bonfiglioli,
Taylor formula for homogeneous groups and applications, Math. Z., 262 (2009), 255-279.
doi: 10.1007/s00209-008-0372-z. |
[5] |
C. Bucur and A. L. Karakhanyan,
Potential theoretic approach to Schauder estimates for the fractional Laplacian, Proc. Amer. Math. Soc., 145 (2017), 637-651.
doi: 10.1090/proc/13227. |
[6] |
M. Di Francesco and S. Polidoro,
Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form, Adv. Differ. Equ., 11 (2006), 1261-1320.
|
[7] |
G. B. Folland,
Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207.
doi: 10.1007/BF02386204. |
[8] |
G. B. Folland and E. M. Stein,
Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group, Commun. Pure Appl. Math., 27 (1974), 429-522.
doi: 10.1002/cpa.3160270403. |
[9] |
G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, in Mathematical Notes, Princeton University Press, 1982. |
[10] |
La rs Hörmander,
Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.
doi: 10.1007/BF02392081. |
[11] |
C. Imbert and L. Silvestre,
Regularity for the Boltzmann equation conditional to macroscopic bounds, EMS Press, 7 (2020), 117-172.
doi: 10.4171/emss/37. |
[12] |
A. Kolmogoroff,
Zufällige Bewegungen (zur Theorie der Brownschen Bewegung), Ann. Math., 35 (1934), 116-117.
doi: 10.2307/1968123. |
[13] |
E. Lanconelli and S. Polidoro,
On a class of hypoelliptic evolution operators, Partial differential equations, II (Turin, 1993), 52 (1994), 29-63.
|
[14] |
L. Lorenzi,
Schauder estimates for degenerate elliptic and parabolic problems with unbounded coefficients in ${\mathbb R}^N$, Differ. Integral Equ., 18 (2005), 531-566.
|
[15] |
A. Lunardi,
Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in ${\mathbb{R} }^n$, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 133-164.
|
[16] |
M. Manfredini,
The Dirichlet problem for a class of ultraparabolic equations, Adv. Differ. Equ., 2 (1997), 831-866.
|
[17] |
S. Menozzi,
Parametrix techniques and martingale problems for some degenerate Kolmogorov equations, Electron. Commun. Probab., 16 (2011), 234-250.
doi: 10.1214/ECP.v16-1619. |
[18] |
A. Nagel, E. M. Stein and S. Wainger,
Balls and metrics defined by vector fields. I. Basic properties, Acta Math., 155 (1985), 103-147.
doi: 10.1007/BF02392539. |
[19] |
S. Pagliarani, A. Pascucci and M. Pignotti,
Intrinsic Taylor formula for Kolmogorov-type homogeneous groups, J. Math. Anal. Appl., 435 (2016), 1054-1087.
doi: 10.1016/j.jmaa.2015.10.080. |
[20] |
Stefano Pagliarani and Michele Pignotti, Intrinsic Taylor formula for non-homogeneous Kolmogorov-type Lie groups, arXiv: 1707.01422v2. |
[21] |
A. Pascucci, PDE and Martingale Methods in Option Pricing, Milano, Springer, 2011.
doi: 10.1007/978-88-470-1781-8. |
[22] |
M. Pignotti, Averaged Stochastic Processes and Kolmogorov Operators, Ph.D thesis, Alma Mater Studiorum Università di Bologna, 2018. |
[23] |
E. Priola,
Global Schauder estimates for a class of degenerate Kolmogorov equations, Stud. Math., 194 (2007), 117-153.
doi: 10.4064/sm194-2-2. |
[24] |
L. P. Rothschild and E. M. Stein,
Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320.
doi: 10.1007/BF02392419. |
[25] |
X. J. Wang,
Schauder estimates for elliptic and parabolic equations, Chinese Ann. Math. Ser. B, 27 (2006), 637-642.
doi: 10.1007/s11401-006-0142-3. |
[26] |
N. Wei, Y. Jiang and Y. Wu,
Partial Schauder estimates for a sub-elliptic equation, Acta Math. Sci. Ser. B (Engl. Ed.), 36 (2016), 945-956.
doi: 10.1016/S0252-9602(16)30051-0. |
show all references
References:
[1] |
F. Anceschi and S. Polidoro,
A survey on the classical theory for Kolmogorov equation, Matematiche (Catania), 75 (2020), 221-258.
doi: 10.4418/2020.75.1.11. |
[2] |
G. Arena, A. O. Caruso and A. Causa,
Taylor formula on step two Carnot groups, Rev. Mat. Iberoam., 26 (2010), 239-259.
doi: 10.4171/RMI/600. |
[3] |
A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, in Springer Monographs in Mathematics, Springer, Berlin, 2007. |
[4] |
A. Bonfiglioli,
Taylor formula for homogeneous groups and applications, Math. Z., 262 (2009), 255-279.
doi: 10.1007/s00209-008-0372-z. |
[5] |
C. Bucur and A. L. Karakhanyan,
Potential theoretic approach to Schauder estimates for the fractional Laplacian, Proc. Amer. Math. Soc., 145 (2017), 637-651.
doi: 10.1090/proc/13227. |
[6] |
M. Di Francesco and S. Polidoro,
Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form, Adv. Differ. Equ., 11 (2006), 1261-1320.
|
[7] |
G. B. Folland,
Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207.
doi: 10.1007/BF02386204. |
[8] |
G. B. Folland and E. M. Stein,
Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group, Commun. Pure Appl. Math., 27 (1974), 429-522.
doi: 10.1002/cpa.3160270403. |
[9] |
G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, in Mathematical Notes, Princeton University Press, 1982. |
[10] |
La rs Hörmander,
Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.
doi: 10.1007/BF02392081. |
[11] |
C. Imbert and L. Silvestre,
Regularity for the Boltzmann equation conditional to macroscopic bounds, EMS Press, 7 (2020), 117-172.
doi: 10.4171/emss/37. |
[12] |
A. Kolmogoroff,
Zufällige Bewegungen (zur Theorie der Brownschen Bewegung), Ann. Math., 35 (1934), 116-117.
doi: 10.2307/1968123. |
[13] |
E. Lanconelli and S. Polidoro,
On a class of hypoelliptic evolution operators, Partial differential equations, II (Turin, 1993), 52 (1994), 29-63.
|
[14] |
L. Lorenzi,
Schauder estimates for degenerate elliptic and parabolic problems with unbounded coefficients in ${\mathbb R}^N$, Differ. Integral Equ., 18 (2005), 531-566.
|
[15] |
A. Lunardi,
Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in ${\mathbb{R} }^n$, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 133-164.
|
[16] |
M. Manfredini,
The Dirichlet problem for a class of ultraparabolic equations, Adv. Differ. Equ., 2 (1997), 831-866.
|
[17] |
S. Menozzi,
Parametrix techniques and martingale problems for some degenerate Kolmogorov equations, Electron. Commun. Probab., 16 (2011), 234-250.
doi: 10.1214/ECP.v16-1619. |
[18] |
A. Nagel, E. M. Stein and S. Wainger,
Balls and metrics defined by vector fields. I. Basic properties, Acta Math., 155 (1985), 103-147.
doi: 10.1007/BF02392539. |
[19] |
S. Pagliarani, A. Pascucci and M. Pignotti,
Intrinsic Taylor formula for Kolmogorov-type homogeneous groups, J. Math. Anal. Appl., 435 (2016), 1054-1087.
doi: 10.1016/j.jmaa.2015.10.080. |
[20] |
Stefano Pagliarani and Michele Pignotti, Intrinsic Taylor formula for non-homogeneous Kolmogorov-type Lie groups, arXiv: 1707.01422v2. |
[21] |
A. Pascucci, PDE and Martingale Methods in Option Pricing, Milano, Springer, 2011.
doi: 10.1007/978-88-470-1781-8. |
[22] |
M. Pignotti, Averaged Stochastic Processes and Kolmogorov Operators, Ph.D thesis, Alma Mater Studiorum Università di Bologna, 2018. |
[23] |
E. Priola,
Global Schauder estimates for a class of degenerate Kolmogorov equations, Stud. Math., 194 (2007), 117-153.
doi: 10.4064/sm194-2-2. |
[24] |
L. P. Rothschild and E. M. Stein,
Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320.
doi: 10.1007/BF02392419. |
[25] |
X. J. Wang,
Schauder estimates for elliptic and parabolic equations, Chinese Ann. Math. Ser. B, 27 (2006), 637-642.
doi: 10.1007/s11401-006-0142-3. |
[26] |
N. Wei, Y. Jiang and Y. Wu,
Partial Schauder estimates for a sub-elliptic equation, Acta Math. Sci. Ser. B (Engl. Ed.), 36 (2016), 945-956.
doi: 10.1016/S0252-9602(16)30051-0. |
[1] |
Luca Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 169-191. doi: 10.3934/dcdss.2011.4.169 |
[2] |
Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515 |
[3] |
Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184 |
[4] |
Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure and Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407 |
[5] |
Vladimir I. Bogachev, Stanislav V. Shaposhnikov, Alexander Yu. Veretennikov. Differentiability of solutions of stationary Fokker--Planck--Kolmogorov equations with respect to a parameter. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3519-3543. doi: 10.3934/dcds.2016.36.3519 |
[6] |
Dung Le. Partial regularity of solutions to a class of strongly coupled degenerate parabolic systems. Conference Publications, 2005, 2005 (Special) : 576-586. doi: 10.3934/proc.2005.2005.576 |
[7] |
David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205 |
[8] |
Yanbo Hu, Tong Li. The regularity of a degenerate Goursat problem for the 2-D isothermal Euler equations. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3317-3336. doi: 10.3934/cpaa.2019149 |
[9] |
Mounim El Ouardy, Youssef El Hadfi, Aziz Ifzarne. Existence and regularity results for a singular parabolic equations with degenerate coercivity. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 117-141. doi: 10.3934/dcdss.2021012 |
[10] |
José Antonio Carrillo, Marco Di Francesco, Antonio Esposito, Simone Fagioli, Markus Schmidtchen. Measure solutions to a system of continuity equations driven by Newtonian nonlocal interactions. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1191-1231. doi: 10.3934/dcds.2020075 |
[11] |
Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure and Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1 |
[12] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[13] |
Julien Dambrine, Morgan Pierre. Continuity with respect to the speed for optimal ship forms based on Michell's formula. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021049 |
[14] |
Yaozhong Hu, Yanghui Liu, David Nualart. Taylor schemes for rough differential equations and fractional diffusions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3115-3162. doi: 10.3934/dcdsb.2016090 |
[15] |
Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4567-4592. doi: 10.3934/dcds.2021049 |
[16] |
Bingyuan Huang, Shijin Ding, Huanyao Wen. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1717-1752. doi: 10.3934/dcdss.2016072 |
[17] |
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085 |
[18] |
P. Di Gironimo, L. D’Onofrio. On the regularity of minimizers to degenerate functionals. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1311-1318. doi: 10.3934/cpaa.2010.9.1311 |
[19] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2505-2518. doi: 10.3934/cpaa.2020272 |
[20] |
Maria Colombo, Gianluca Crippa, Stefano Spirito. Logarithmic estimates for continuity equations. Networks and Heterogeneous Media, 2016, 11 (2) : 301-311. doi: 10.3934/nhm.2016.11.301 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]