-
Previous Article
On a macrophage and tumor cell chemotaxis system with both paracrine and autocrine loops
- CPAA Home
- This Issue
-
Next Article
Schauder type estimates for degenerate Kolmogorov equations with Dini continuous coefficients
On the reducibility of analytic quasi-periodic systems with Liouvillean basic frequencies
School of Mathematics, Southeast University, Nanjing 210096, China |
$ \begin{equation*} \dot{x} = (A+\epsilon P(t)) x, x\in \mathbb{R}^{d}, \end{equation*} $ |
$ A $ |
$ d\times d $ |
$ P(t) $ |
$ t $ |
$ \omega = (1, \alpha), $ |
$ \alpha $ |
$ \epsilon $ |
$ 0\leq \beta(\alpha) < r, $ |
$ \beta(\alpha) = \limsup\limits_{n\rightarrow \infty}\frac{\ln q_{n+1}}{q_{n}}, $ |
$ q_{n} $ |
$ \alpha \in \mathbb{R} \setminus\mathbb{Q}, $ |
$ r $ |
$ \epsilon, $ |
$ \dot{x} = A^{*}x, x\in \mathbb{R}^{d}, $ |
$ A^{*} $ |
$ A. $ |
References:
[1] |
A. Avila, B. Fayad and R. Krikorian,
A KAM scheme for SL(2, R) cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.
doi: 10.1007/s00039-011-0135-6. |
[2] |
D. Bambusi, B. Grébert, A. Maspero and D. Robert,
Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time-dependent perturbation, Anal. Partial Differ. Equ., 11 (2018), 775-799.
doi: 10.2140/apde.2018.11.775. |
[3] |
D. Bambusi,
Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations, I, Trans. Amer. Math. Soc., 370 (2018), 1823-1865.
doi: 10.1090/tran/7135. |
[4] |
D. Bambusi,
Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations, II, Comm. Math. Phys., 353 (2017), 353-378.
doi: 10.1007/s00220-016-2825-2. |
[5] |
Yu. N. Bibikov,
On the stability of the zero solution of essentially nonlinear Hamiltonian systems and reversible systems with one degree of freedom, Differ. Equ., 38 (2002), 609-614.
doi: 10.1023/A:1020298221798. |
[6] |
A. Bounemoura,
Effective stability for Gevrey and finitely differentiable prevalent Hamiltonians, Commun. Math. Phys., 307 (2011), 157-183.
doi: 10.1007/s00220-011-1306-x. |
[7] |
A. Bounemoura and J. Féjoz,
KAM, $\alpha$-Gevrey regularity and the $\alpha$-Bruno-Rüssmann condition, Ann. Sc. Norm. Super. Pisa Cl. Sci., 19 (2019), 1225-1279.
|
[8] |
C. Chavaudret and S. Marmi,
Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition, J. Mod. Dyn., 6 (2012), 59-78.
doi: 10.3934/jmd.2012.6.59. |
[9] |
C. Chavaudret,
Strong almost reducibility for analytic and Gevrey quasi-periodic cocycles, Bull. Soc. Math. France, 141 (2013), 47-106.
doi: 10.24033/bsmf.2643. |
[10] |
C. Chavaudret and L. Stolovitch,
Analytic reducibility of resonant cocycles to a normal form, J. Inst. Math. Jussieu, 15 (2016), 203-223.
doi: 10.1017/S1474748014000383. |
[11] |
E. I. Dinaburg and Ya. G. Sinai,
The one dimensional Schrödinger equation with quasi-perioidc potential, Funct. Anal. Appl., 9 (1975), 8-21.
|
[12] |
L. H. Eliasson,
Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Commun. Math. Phys., 146 (1992), 447-482.
|
[13] |
L. H. Eliasson, Almost reducibility of linear quasi-periodic systems, Smooth ergodic theory and its applications (Seattle, WA, 1999), 679–705, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, 2001.
doi: 10.1090/pspum/069/1858550. |
[14] |
L. H. Eliasson and S. B. Kuksin,
On reducibility of Schrödinger equations with quasi-periodic in time potentials, Commun. Math. Phys., 286 (2009), 125-135.
doi: 10.1007/s00220-008-0683-2. |
[15] |
B. Fayad and R. Krikorian, Herman's last geometric theorem, Ann. Sci. Éc. Norm. Supér., 42 (2009), 193–219.
doi: 10.24033/asens.2093. |
[16] |
H. Her and J. You,
Full measure reducibility for generic one-parameter family of quasi-periodic linear systems, J. Dynam. Differ. Equ., 20 (2008), 831-866.
doi: 10.1007/s10884-008-9113-6. |
[17] |
X. Hou and J. You,
Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems, Invent. Math., 190 (2012), 209-260.
doi: 10.1007/s00222-012-0379-2. |
[18] |
R. A. Johnson and G. R. Sell,
Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems, J. Differ. Equ., 41 (1981), 262-288.
doi: 10.1016/0022-0396(81)90062-0. |
[19] |
À. Jorba and C. Simó,
On the reducibility of linear differential equation with quasi-perioidc coefficients, J. Differ. Equ., 98 (1992), 111-124.
doi: 10.1016/0022-0396(92)90107-X. |
[20] |
À. Jorba and C. Simó,
On quasi-periodic perturbations of elliptic equilibrium points, SIAM J. Math. Anal., 27 (1996), 1704-1737.
doi: 10.1137/S0036141094276913. |
[21] |
R. Krikorian,
Global density of reducible quasi-periodic cocycles on $\mathbb{T}^{1} \times SU(2)$, Ann. Math., 154 (2001), 269-326.
doi: 10.2307/3062098. |
[22] |
B. Liu,
The stability of the equilibrium of planar Hamiltonian and reversible systems, J. Dynam. Differ. Equ., 18 (2006), 975-990.
doi: 10.1007/s10884-006-9027-0. |
[23] |
B. Liu,
The stability of equilibrium of quasi-periodic planar Hamiltonian and reversible systems, Sci. China Math., 53 (2010), 125-136.
doi: 10.1007/s11425-009-0117-4. |
[24] |
J. Lopes Dias,
A normal form theorem for Brjuno skew systems through renormalization, J. Differ. Equ., 230 (2006), 1-23.
doi: 10.1016/j.jde.2006.07.021. |
[25] |
J. Lopes Dias,
Brjuno condition and renormalization for Poincaré flows, Discrete Contin. Dyn. Syst., 15 (2006), 641-656.
doi: 10.3934/dcds.2006.15.641. |
[26] |
J. Lopes Dias and J. Pedro Gaivão,
Linearization of Gevrey flows on $\mathbb{T}^{d}$ with a Brjuno type arithmetical condition, J. Differ. Equ., 267 (2019), 7167-7212.
doi: 10.1016/j.jde.2019.07.020. |
[27] |
J. Liang and J. Xu,
A note on the extension of Dinaburg-Sinai theorem to higher dimension, Ergodic Theory Dynam. Syst., 25 (2005), 1539-1549.
doi: 10.1017/S0143385705000118. |
[28] |
W. Magnus and S. Winkler, Hill's Equation, Corrected reprint of the 1966 edition. Dover Publications, Inc., New York, 1979. |
[29] |
J. P. Marco and D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci., No. 96 (2002), 199–275 (2003).
doi: 10.1007/s10240-003-0011-5. |
[30] |
J. Pöschel,
KAM $\grave{a}$ la R, Regul. Chaotic Dyn., 16 (2011), 17-23.
doi: 10.1134/S1560354710520060. |
[31] |
G. Popov,
KAM theorem for Gevrey Hamiltonians, Ergodic Theory Dynam. Systems, 24 (2004), 1753-1786.
doi: 10.1017/S0143385704000458. |
[32] |
H. Rüssmann,
On the one dimensional Schrödinger equation with a quasi-perioidc potential, Ann. New York Acad. Sci., 357 (1980), 90-107.
|
[33] |
H. Rüssmann,
Convergent transformations into a normal form in analytic Hamiltonian systems with two degrees of freedom on the zero energy surface near degenerate elliptic singularities, Ergodic Theory Dynam. Systems, 24 (2004), 1787-1832.
doi: 10.1017/S0143385703000774. |
[34] |
J. Wang, J. You and Q. Zhou,
Response solutions for quasi-periodically forced harmonic oscillators, Trans. Amer. Math. Soc., 369 (2017), 4251-4274.
doi: 10.1090/tran/6800. |
[35] |
X. Wang and J. Xu,
On the reducibility of a class of nonlinear quasi-periodic system with small perturbation parameter near zero equilibrium point, Nonlinear Anal., 69 (2008), 2318-2329.
doi: 10.1016/j.na.2007.08.016. |
[36] |
X. Wang, J. Xu and D. Zhang,
On the persistence of degenerate lower-dimensional tori in reversible systems, Ergodic Theory Dynam. Systems, 35 (2015), 2311-2333.
doi: 10.1017/etds.2014.34. |
[37] |
Y. Wu and Y. Wang,
The stability of the elliptic equilibuium of planar quasi-periodic Hamiltonian system, Acta Math. Sin., 28 (2002), 801-816.
doi: 10.1007/s10114-011-0006-y. |
[38] |
Zh. Wang and Zh. Liang,
Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay, Nonlinearity, 30 (2017), 1405-1448.
doi: 10.1088/1361-6544/aa5d6c. |
[39] |
J. Xu and Q. Zheng,
On the reducibility of linear differential equations with quasiperiodic coefficients which are degenerate, Proc. Amer. Math. Soc., 126 (1998), 1445-1451.
doi: 10.1090/S0002-9939-98-04523-7. |
[40] |
J. Xu,
On the reducibility of a class of linear differential equation with quasi-periodic coefficients, Mathematika, 46 (1999), 443-451.
doi: 10.1112/S0025579300007907. |
[41] |
J. Xu and J. You,
Persistence of lower-dimensional tori under the first Melnikov's non-resonance condition, J. Math. Pures Appl., 80 (2001), 1045-1067.
doi: 10.1016/S0021-7824(01)01221-1. |
[42] |
J. Xu,
Normal form of reversible systems and persistence of lower dimensional tori under weaker nonresonance conditions, SIAM J. Math. Anal., 36 (2004), 233-255.
doi: 10.1137/S0036141003421923. |
[43] |
J. Xu and X. Lu,
On the reducibility of two-dimensional linear quasi-periodic systems with small parameter, Ergodic Theory Dynam. Systems, 35 (2015), 2334-2352.
doi: 10.1017/etds.2014.31. |
[44] |
X. Yuan and A. Nunes, A note on the reducibility of linear differential equations with quasiperiodic coefficients, Int. J. Math. Math. Sci., 2003, 4071–4083.
doi: 10.1155/S0161171203206025. |
[45] |
D. Zhang and J. Xu,
Invariant curves of analytic reversible mappings under Brjuno-Rüssmann's non-resonant condition, J. Dynam. Differ. Equ., 26 (2014), 989-1005.
doi: 10.1007/s10884-014-9366-1. |
[46] |
D. Zhang, J. Xu and H. Wu,
On Invariant Tori with Prescribed Frequency in Hamiltonian Systems, Adv. Nonlinear Stud., 16 (2016), 719-737.
doi: 10.1515/ans-2015-5051. |
[47] |
D. Zhang and J. Liang,
On high dimensional Schrödinger equation with quasi-periodic potentials, J. Dyn. Control Syst., 23 (2017), 655-666.
doi: 10.1007/s10883-016-9347-2. |
[48] |
D. Zhang, J. Xu and X. Xu,
Reducibility of three dimensional skew symmetric system with Liouvillean basic frequencies, Discrete Contin. Dyn. Syst., 38 (2018), 2851-2877.
doi: 10.3934/dcds.2018123. |
[49] |
H. Zhao,
A note on quasi-periodic perturbations of elliptic equilibrium points, Bull. Korean Math. Soc., 49 (2012), 1223-1240.
doi: 10.4134/BKMS.2012.49.6.1223. |
[50] |
M. Zhang and W. Li,
A Lyapunov-type stability criterion using $L^{\alpha}$ norms, Proc. Amer. Math. Soc., 130 (2002), 3325-3333.
doi: 10.1090/S0002-9939-02-06462-6. |
[51] |
Q. Zhou and J. Wang,
Reducibility results for quasiperiodic cocycles with Liouvillean frequency, J. Dynam. Differ. Equ., 24 (2012), 61-83.
doi: 10.1007/s10884-011-9235-0. |
[52] |
D. Zhang and J. Xu,
On elliptic lower dimensional tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition, Discrete Contin. Dyn. Syst., 16 (2006), 635-655.
doi: 10.3934/dcds.2006.16.635. |
[53] |
D. Zhang and J. Xu,
Invariant tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition, Nonlinear Anal., 67 (2007), 2240-2257.
doi: 10.1016/j.na.2006.09.012. |
show all references
References:
[1] |
A. Avila, B. Fayad and R. Krikorian,
A KAM scheme for SL(2, R) cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.
doi: 10.1007/s00039-011-0135-6. |
[2] |
D. Bambusi, B. Grébert, A. Maspero and D. Robert,
Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time-dependent perturbation, Anal. Partial Differ. Equ., 11 (2018), 775-799.
doi: 10.2140/apde.2018.11.775. |
[3] |
D. Bambusi,
Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations, I, Trans. Amer. Math. Soc., 370 (2018), 1823-1865.
doi: 10.1090/tran/7135. |
[4] |
D. Bambusi,
Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations, II, Comm. Math. Phys., 353 (2017), 353-378.
doi: 10.1007/s00220-016-2825-2. |
[5] |
Yu. N. Bibikov,
On the stability of the zero solution of essentially nonlinear Hamiltonian systems and reversible systems with one degree of freedom, Differ. Equ., 38 (2002), 609-614.
doi: 10.1023/A:1020298221798. |
[6] |
A. Bounemoura,
Effective stability for Gevrey and finitely differentiable prevalent Hamiltonians, Commun. Math. Phys., 307 (2011), 157-183.
doi: 10.1007/s00220-011-1306-x. |
[7] |
A. Bounemoura and J. Féjoz,
KAM, $\alpha$-Gevrey regularity and the $\alpha$-Bruno-Rüssmann condition, Ann. Sc. Norm. Super. Pisa Cl. Sci., 19 (2019), 1225-1279.
|
[8] |
C. Chavaudret and S. Marmi,
Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition, J. Mod. Dyn., 6 (2012), 59-78.
doi: 10.3934/jmd.2012.6.59. |
[9] |
C. Chavaudret,
Strong almost reducibility for analytic and Gevrey quasi-periodic cocycles, Bull. Soc. Math. France, 141 (2013), 47-106.
doi: 10.24033/bsmf.2643. |
[10] |
C. Chavaudret and L. Stolovitch,
Analytic reducibility of resonant cocycles to a normal form, J. Inst. Math. Jussieu, 15 (2016), 203-223.
doi: 10.1017/S1474748014000383. |
[11] |
E. I. Dinaburg and Ya. G. Sinai,
The one dimensional Schrödinger equation with quasi-perioidc potential, Funct. Anal. Appl., 9 (1975), 8-21.
|
[12] |
L. H. Eliasson,
Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Commun. Math. Phys., 146 (1992), 447-482.
|
[13] |
L. H. Eliasson, Almost reducibility of linear quasi-periodic systems, Smooth ergodic theory and its applications (Seattle, WA, 1999), 679–705, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, 2001.
doi: 10.1090/pspum/069/1858550. |
[14] |
L. H. Eliasson and S. B. Kuksin,
On reducibility of Schrödinger equations with quasi-periodic in time potentials, Commun. Math. Phys., 286 (2009), 125-135.
doi: 10.1007/s00220-008-0683-2. |
[15] |
B. Fayad and R. Krikorian, Herman's last geometric theorem, Ann. Sci. Éc. Norm. Supér., 42 (2009), 193–219.
doi: 10.24033/asens.2093. |
[16] |
H. Her and J. You,
Full measure reducibility for generic one-parameter family of quasi-periodic linear systems, J. Dynam. Differ. Equ., 20 (2008), 831-866.
doi: 10.1007/s10884-008-9113-6. |
[17] |
X. Hou and J. You,
Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems, Invent. Math., 190 (2012), 209-260.
doi: 10.1007/s00222-012-0379-2. |
[18] |
R. A. Johnson and G. R. Sell,
Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems, J. Differ. Equ., 41 (1981), 262-288.
doi: 10.1016/0022-0396(81)90062-0. |
[19] |
À. Jorba and C. Simó,
On the reducibility of linear differential equation with quasi-perioidc coefficients, J. Differ. Equ., 98 (1992), 111-124.
doi: 10.1016/0022-0396(92)90107-X. |
[20] |
À. Jorba and C. Simó,
On quasi-periodic perturbations of elliptic equilibrium points, SIAM J. Math. Anal., 27 (1996), 1704-1737.
doi: 10.1137/S0036141094276913. |
[21] |
R. Krikorian,
Global density of reducible quasi-periodic cocycles on $\mathbb{T}^{1} \times SU(2)$, Ann. Math., 154 (2001), 269-326.
doi: 10.2307/3062098. |
[22] |
B. Liu,
The stability of the equilibrium of planar Hamiltonian and reversible systems, J. Dynam. Differ. Equ., 18 (2006), 975-990.
doi: 10.1007/s10884-006-9027-0. |
[23] |
B. Liu,
The stability of equilibrium of quasi-periodic planar Hamiltonian and reversible systems, Sci. China Math., 53 (2010), 125-136.
doi: 10.1007/s11425-009-0117-4. |
[24] |
J. Lopes Dias,
A normal form theorem for Brjuno skew systems through renormalization, J. Differ. Equ., 230 (2006), 1-23.
doi: 10.1016/j.jde.2006.07.021. |
[25] |
J. Lopes Dias,
Brjuno condition and renormalization for Poincaré flows, Discrete Contin. Dyn. Syst., 15 (2006), 641-656.
doi: 10.3934/dcds.2006.15.641. |
[26] |
J. Lopes Dias and J. Pedro Gaivão,
Linearization of Gevrey flows on $\mathbb{T}^{d}$ with a Brjuno type arithmetical condition, J. Differ. Equ., 267 (2019), 7167-7212.
doi: 10.1016/j.jde.2019.07.020. |
[27] |
J. Liang and J. Xu,
A note on the extension of Dinaburg-Sinai theorem to higher dimension, Ergodic Theory Dynam. Syst., 25 (2005), 1539-1549.
doi: 10.1017/S0143385705000118. |
[28] |
W. Magnus and S. Winkler, Hill's Equation, Corrected reprint of the 1966 edition. Dover Publications, Inc., New York, 1979. |
[29] |
J. P. Marco and D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci., No. 96 (2002), 199–275 (2003).
doi: 10.1007/s10240-003-0011-5. |
[30] |
J. Pöschel,
KAM $\grave{a}$ la R, Regul. Chaotic Dyn., 16 (2011), 17-23.
doi: 10.1134/S1560354710520060. |
[31] |
G. Popov,
KAM theorem for Gevrey Hamiltonians, Ergodic Theory Dynam. Systems, 24 (2004), 1753-1786.
doi: 10.1017/S0143385704000458. |
[32] |
H. Rüssmann,
On the one dimensional Schrödinger equation with a quasi-perioidc potential, Ann. New York Acad. Sci., 357 (1980), 90-107.
|
[33] |
H. Rüssmann,
Convergent transformations into a normal form in analytic Hamiltonian systems with two degrees of freedom on the zero energy surface near degenerate elliptic singularities, Ergodic Theory Dynam. Systems, 24 (2004), 1787-1832.
doi: 10.1017/S0143385703000774. |
[34] |
J. Wang, J. You and Q. Zhou,
Response solutions for quasi-periodically forced harmonic oscillators, Trans. Amer. Math. Soc., 369 (2017), 4251-4274.
doi: 10.1090/tran/6800. |
[35] |
X. Wang and J. Xu,
On the reducibility of a class of nonlinear quasi-periodic system with small perturbation parameter near zero equilibrium point, Nonlinear Anal., 69 (2008), 2318-2329.
doi: 10.1016/j.na.2007.08.016. |
[36] |
X. Wang, J. Xu and D. Zhang,
On the persistence of degenerate lower-dimensional tori in reversible systems, Ergodic Theory Dynam. Systems, 35 (2015), 2311-2333.
doi: 10.1017/etds.2014.34. |
[37] |
Y. Wu and Y. Wang,
The stability of the elliptic equilibuium of planar quasi-periodic Hamiltonian system, Acta Math. Sin., 28 (2002), 801-816.
doi: 10.1007/s10114-011-0006-y. |
[38] |
Zh. Wang and Zh. Liang,
Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay, Nonlinearity, 30 (2017), 1405-1448.
doi: 10.1088/1361-6544/aa5d6c. |
[39] |
J. Xu and Q. Zheng,
On the reducibility of linear differential equations with quasiperiodic coefficients which are degenerate, Proc. Amer. Math. Soc., 126 (1998), 1445-1451.
doi: 10.1090/S0002-9939-98-04523-7. |
[40] |
J. Xu,
On the reducibility of a class of linear differential equation with quasi-periodic coefficients, Mathematika, 46 (1999), 443-451.
doi: 10.1112/S0025579300007907. |
[41] |
J. Xu and J. You,
Persistence of lower-dimensional tori under the first Melnikov's non-resonance condition, J. Math. Pures Appl., 80 (2001), 1045-1067.
doi: 10.1016/S0021-7824(01)01221-1. |
[42] |
J. Xu,
Normal form of reversible systems and persistence of lower dimensional tori under weaker nonresonance conditions, SIAM J. Math. Anal., 36 (2004), 233-255.
doi: 10.1137/S0036141003421923. |
[43] |
J. Xu and X. Lu,
On the reducibility of two-dimensional linear quasi-periodic systems with small parameter, Ergodic Theory Dynam. Systems, 35 (2015), 2334-2352.
doi: 10.1017/etds.2014.31. |
[44] |
X. Yuan and A. Nunes, A note on the reducibility of linear differential equations with quasiperiodic coefficients, Int. J. Math. Math. Sci., 2003, 4071–4083.
doi: 10.1155/S0161171203206025. |
[45] |
D. Zhang and J. Xu,
Invariant curves of analytic reversible mappings under Brjuno-Rüssmann's non-resonant condition, J. Dynam. Differ. Equ., 26 (2014), 989-1005.
doi: 10.1007/s10884-014-9366-1. |
[46] |
D. Zhang, J. Xu and H. Wu,
On Invariant Tori with Prescribed Frequency in Hamiltonian Systems, Adv. Nonlinear Stud., 16 (2016), 719-737.
doi: 10.1515/ans-2015-5051. |
[47] |
D. Zhang and J. Liang,
On high dimensional Schrödinger equation with quasi-periodic potentials, J. Dyn. Control Syst., 23 (2017), 655-666.
doi: 10.1007/s10883-016-9347-2. |
[48] |
D. Zhang, J. Xu and X. Xu,
Reducibility of three dimensional skew symmetric system with Liouvillean basic frequencies, Discrete Contin. Dyn. Syst., 38 (2018), 2851-2877.
doi: 10.3934/dcds.2018123. |
[49] |
H. Zhao,
A note on quasi-periodic perturbations of elliptic equilibrium points, Bull. Korean Math. Soc., 49 (2012), 1223-1240.
doi: 10.4134/BKMS.2012.49.6.1223. |
[50] |
M. Zhang and W. Li,
A Lyapunov-type stability criterion using $L^{\alpha}$ norms, Proc. Amer. Math. Soc., 130 (2002), 3325-3333.
doi: 10.1090/S0002-9939-02-06462-6. |
[51] |
Q. Zhou and J. Wang,
Reducibility results for quasiperiodic cocycles with Liouvillean frequency, J. Dynam. Differ. Equ., 24 (2012), 61-83.
doi: 10.1007/s10884-011-9235-0. |
[52] |
D. Zhang and J. Xu,
On elliptic lower dimensional tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition, Discrete Contin. Dyn. Syst., 16 (2006), 635-655.
doi: 10.3934/dcds.2006.16.635. |
[53] |
D. Zhang and J. Xu,
Invariant tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition, Nonlinear Anal., 67 (2007), 2240-2257.
doi: 10.1016/j.na.2006.09.012. |
[1] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241 |
[2] |
Dongfeng Zhang, Junxiang Xu, Xindong Xu. Reducibility of three dimensional skew symmetric system with Liouvillean basic frequencies. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2851-2877. doi: 10.3934/dcds.2018123 |
[3] |
Xuanji Hou, Lei Jiao. On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3125-3152. doi: 10.3934/dcds.2016.36.3125 |
[4] |
Xuanji Hou, Jiangong You. Local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 441-454. doi: 10.3934/dcds.2009.24.441 |
[5] |
Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Superstable periodic orbits of 1d maps under quasi-periodic forcing and reducibility loss. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 589-597. doi: 10.3934/dcds.2014.34.589 |
[6] |
Zhichao Ma, Junxiang Xu. A KAM theorem for quasi-periodic non-twist mappings and its application. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3169-3185. doi: 10.3934/dcds.2022013 |
[7] |
Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467 |
[8] |
Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006 |
[9] |
Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75 |
[10] |
Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537 |
[11] |
Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104 |
[12] |
Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585 |
[13] |
Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169 |
[14] |
Xavier Blanc, Claude Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5 (1) : 1-29. doi: 10.3934/nhm.2010.5.1 |
[15] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171 |
[16] |
Jinhao Liang. Positive Lyapunov exponent for a class of quasi-periodic cocycles. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1361-1387. doi: 10.3934/dcds.2020080 |
[17] |
Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209 |
[18] |
Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019 |
[19] |
Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615 |
[20] |
Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]