-
Previous Article
Least squares estimation for distribution-dependent stochastic differential delay equations
- CPAA Home
- This Issue
-
Next Article
On a macrophage and tumor cell chemotaxis system with both paracrine and autocrine loops
Concentration behavior of ground states for $ L^2 $-critical Schrödinger Equation with a spatially decaying nonlinearity
1. | School of Mathematics and Statistics, and Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, P.O. Box 71010, Wuhan 430079, China |
2. | School of Mathematics and Statistics, Central China Normal University, P.O. Box 71010, Wuhan 430079, China |
$ L^2 $ |
$ -\Delta u(x)+V(x)u(x)-a|x|^{-b}|u|^{\frac{4-2b}{N}}u(x) = \mu u(x)\,\ \hbox{in}\,\ {\mathbb{R}}^N, $ |
$ \mu\!\in\! {\mathbb{R}} $ |
$ a\!>\!0 $ |
$ N\!\geq\! 1 $ |
$ 0\!<\!b\!<\!\min\{2,N\} $ |
$ V(x)\!\geq\! 0 $ |
$ a^*\!>\!0 $ |
$ 0\!<\!a\!<\!a^* $ |
$ a\!>\!a^* $ |
$ a\! = \!a^* $ |
$ V(0) $ |
$ V(0)\! = \!0 $ |
$ a\nearrow a^* $ |
$ a\nearrow a^* $ |
$ a $ |
$ a^* $ |
References:
[1] |
A. H. Ardila and V. D. Dinh, Some qualitative studies of the focusing inhomogeneous Gross-Pitaevskii equation, Z. Angew. Math. Phys., 71 (2020), 24 pp.
doi: 10.1007/s00033-020-01301-z. |
[2] |
G. Baym and C. J. Pethick,
Ground state properties of magnetically trapped Bose Einstein condensate rubidium gas, Phys. Rev. Lett., 76 (1996), 6-9.
|
[3] |
D. Cao, S. Li and P. Luo,
Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 54 (2015), 4037-4063.
doi: 10.1007/s00526-015-0930-2. |
[4] |
Y. Deng, Y. Guo and L. Lu,
On the collapse and concentration of Bose-Einstein condensates with inhomogeneous attractive interactions, Calc. Var. Partial Differ. Equ., 54 (2015), 99-118.
doi: 10.1007/s00526-014-0779-9. |
[5] |
Y. Deng, Y. Guo and L. Lu,
Threshold behavior and uniqueness of ground states for mass critical inhomogeneous Schrdinger equations, J. Math. Phys., 59 (2018), 011503.
doi: 10.1063/1.5008924. |
[6] |
Y. Deng, C. Lin and S. Yan,
On the prescribed scalar curvature problem in $ {\mathbb{R}}^N$, local uniqueness and periodicity, J. Math. Pures Appl., 104 (2015), 1013-1044.
doi: 10.1016/j.matpur.2015.07.003. |
[7] |
F. Genoud, Théorie de bifurcation et de stabilité pour une équation de Schrödinger avec une non-linéarité compacte, Ph.D thesis, EPFL, 2008. |
[8] |
F. Genoud,
A uniqueness result for $\Delta u-\lambda u+V(x)u^p = 0$ on $ {\mathbb{R}}^2$, Adv. Nonlinear Stud., 11 (2011), 483-491.
doi: 10.1515/ans-2011-0301. |
[9] |
F. Genoud,
An Inhomogeneous, $L^{2}$-Critical, Nonlinear Schrödinger Equation, Z. Anal. Anwend., 31 (2012), 283-290.
doi: 10.4171/ZAA/1460. |
[10] |
F. Genoud and C. Stuart,
Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21 (2008), 137-186.
doi: 10.3934/dcds.2008.21.137. |
[11] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1997. |
[12] |
Y. Guo, C. Lin and J. Wei,
Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates, SIAM J. Math. Anal., 49 (2017), 3671-3715.
doi: 10.1137/16M1100290. |
[13] |
Y. Guo and R. Seiringer,
On the mass concentration for Bose-Einstein condensates with attactive interactions, Lett. Math. Phys., 104 (2014), 141-156.
doi: 10.1007/s11005-013-0667-9. |
[14] |
Y. Guo, Z. Wang, X. Zeng and H. Zhou,
Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, Nonlinearity, 31 (2018), 957-979.
doi: 10.1088/1361-6544/aa99a8. |
[15] |
Y. Guo, X. Zeng and H. Zhou,
Energy estimates and symmetry breaking in attactive Bose-Einstein condensates with ring-shaped potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 809-828.
doi: 10.1016/j.anihpc.2015.01.005. |
[16] |
Q. Han and F. Lin, Elliptic Partial Differential Equations, Courant Lecture Note in Math., Courant Institute of Mathematical Science/AMS, New York, 2011. |
[17] |
E. H. Lieb and M. Loss, Analysis, 2$^{nd}$ edition, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, 2001.
doi: 10.1090/gsm/014. |
[18] |
C. Liu and V. K. Tripathi, Laser guiding in an axially nonuniform plasma channel, Phys. Plasmas, 1 (1994), 3100–3103. |
[19] |
J. F. Toland,
Uniqueness of positive solutions of some semilinear Sturm-Liouville problems on the half line, Proc. Roy. Soc. Edinburgh Sect.A, 97 (1984), 259-263.
doi: 10.1017/S0308210500032042. |
[20] |
V. E. Zakharov, S. L. Musher and A. M. Rubenchik,
Hamiltonian approach to the description of non-linear plasma phenomena, Phys. Rep., 129 (1985), 285-366.
doi: 10.1016/0370-1573(85)90040-7. |
[21] |
J. Zhang,
Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials, Z. Angew. Math. Phys., 51 (2000), 498-503.
doi: 10.1007/s000330050011. |
show all references
References:
[1] |
A. H. Ardila and V. D. Dinh, Some qualitative studies of the focusing inhomogeneous Gross-Pitaevskii equation, Z. Angew. Math. Phys., 71 (2020), 24 pp.
doi: 10.1007/s00033-020-01301-z. |
[2] |
G. Baym and C. J. Pethick,
Ground state properties of magnetically trapped Bose Einstein condensate rubidium gas, Phys. Rev. Lett., 76 (1996), 6-9.
|
[3] |
D. Cao, S. Li and P. Luo,
Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 54 (2015), 4037-4063.
doi: 10.1007/s00526-015-0930-2. |
[4] |
Y. Deng, Y. Guo and L. Lu,
On the collapse and concentration of Bose-Einstein condensates with inhomogeneous attractive interactions, Calc. Var. Partial Differ. Equ., 54 (2015), 99-118.
doi: 10.1007/s00526-014-0779-9. |
[5] |
Y. Deng, Y. Guo and L. Lu,
Threshold behavior and uniqueness of ground states for mass critical inhomogeneous Schrdinger equations, J. Math. Phys., 59 (2018), 011503.
doi: 10.1063/1.5008924. |
[6] |
Y. Deng, C. Lin and S. Yan,
On the prescribed scalar curvature problem in $ {\mathbb{R}}^N$, local uniqueness and periodicity, J. Math. Pures Appl., 104 (2015), 1013-1044.
doi: 10.1016/j.matpur.2015.07.003. |
[7] |
F. Genoud, Théorie de bifurcation et de stabilité pour une équation de Schrödinger avec une non-linéarité compacte, Ph.D thesis, EPFL, 2008. |
[8] |
F. Genoud,
A uniqueness result for $\Delta u-\lambda u+V(x)u^p = 0$ on $ {\mathbb{R}}^2$, Adv. Nonlinear Stud., 11 (2011), 483-491.
doi: 10.1515/ans-2011-0301. |
[9] |
F. Genoud,
An Inhomogeneous, $L^{2}$-Critical, Nonlinear Schrödinger Equation, Z. Anal. Anwend., 31 (2012), 283-290.
doi: 10.4171/ZAA/1460. |
[10] |
F. Genoud and C. Stuart,
Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21 (2008), 137-186.
doi: 10.3934/dcds.2008.21.137. |
[11] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1997. |
[12] |
Y. Guo, C. Lin and J. Wei,
Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates, SIAM J. Math. Anal., 49 (2017), 3671-3715.
doi: 10.1137/16M1100290. |
[13] |
Y. Guo and R. Seiringer,
On the mass concentration for Bose-Einstein condensates with attactive interactions, Lett. Math. Phys., 104 (2014), 141-156.
doi: 10.1007/s11005-013-0667-9. |
[14] |
Y. Guo, Z. Wang, X. Zeng and H. Zhou,
Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, Nonlinearity, 31 (2018), 957-979.
doi: 10.1088/1361-6544/aa99a8. |
[15] |
Y. Guo, X. Zeng and H. Zhou,
Energy estimates and symmetry breaking in attactive Bose-Einstein condensates with ring-shaped potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 809-828.
doi: 10.1016/j.anihpc.2015.01.005. |
[16] |
Q. Han and F. Lin, Elliptic Partial Differential Equations, Courant Lecture Note in Math., Courant Institute of Mathematical Science/AMS, New York, 2011. |
[17] |
E. H. Lieb and M. Loss, Analysis, 2$^{nd}$ edition, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, 2001.
doi: 10.1090/gsm/014. |
[18] |
C. Liu and V. K. Tripathi, Laser guiding in an axially nonuniform plasma channel, Phys. Plasmas, 1 (1994), 3100–3103. |
[19] |
J. F. Toland,
Uniqueness of positive solutions of some semilinear Sturm-Liouville problems on the half line, Proc. Roy. Soc. Edinburgh Sect.A, 97 (1984), 259-263.
doi: 10.1017/S0308210500032042. |
[20] |
V. E. Zakharov, S. L. Musher and A. M. Rubenchik,
Hamiltonian approach to the description of non-linear plasma phenomena, Phys. Rep., 129 (1985), 285-366.
doi: 10.1016/0370-1573(85)90040-7. |
[21] |
J. Zhang,
Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials, Z. Angew. Math. Phys., 51 (2000), 498-503.
doi: 10.1007/s000330050011. |
[1] |
Ruoci Sun. Filtering the $ L^2- $critical focusing Schrödinger equation. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5973-5990. doi: 10.3934/dcds.2020255 |
[2] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[3] |
Abdelwahab Bensouilah, Sahbi Keraani. Smoothing property for the $ L^2 $-critical high-order NLS Ⅱ. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2961-2976. doi: 10.3934/dcds.2019123 |
[4] |
Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4207-4253. doi: 10.3934/dcds.2021034 |
[5] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[6] |
Peili Li, Xiliang Lu, Yunhai Xiao. Smoothing Newton method for $ \ell^0 $-$ \ell^2 $ regularized linear inverse problem. Inverse Problems and Imaging, 2022, 16 (1) : 153-177. doi: 10.3934/ipi.2021044 |
[7] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[8] |
Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085 |
[9] |
Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124 |
[10] |
Xuerui Gao, Yanqin Bai, Shu-Cherng Fang, Jian Luo, Qian Li. A new hybrid $ l_p $-$ l_2 $ model for sparse solutions with applications to image processing. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021211 |
[11] |
Gyu Eun Lee. Local wellposedness for the critical nonlinear Schrödinger equation on $ \mathbb{T}^3 $. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2763-2783. doi: 10.3934/dcds.2019116 |
[12] |
Yongkuan Cheng, Yaotian Shen. Generalized quasilinear Schrödinger equations with concave functions $ l(s^2) $. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1311-1343. doi: 10.3934/dcds.2019056 |
[13] |
Justin Forlano. Almost sure global well posedness for the BBM equation with infinite $ L^{2} $ initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 267-318. doi: 10.3934/dcds.2020011 |
[14] |
Pierre Gervais. A spectral study of the linearized Boltzmann operator in $ L^2 $-spaces with polynomial and Gaussian weights. Kinetic and Related Models, 2021, 14 (4) : 725-747. doi: 10.3934/krm.2021022 |
[15] |
Mathias Dus. The discretized backstepping method: An application to a general system of $ 2\times 2 $ linear balance laws. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022006 |
[16] |
Boya Li, Hongjie Ju, Yannan Liu. A flow method for a generalization of $ L_{p} $ Christofell-Minkowski problem. Communications on Pure and Applied Analysis, 2022, 21 (3) : 785-796. doi: 10.3934/cpaa.2021198 |
[17] |
Liejun Shen, Marco Squassina, Minbo Yang. Critical gauged Schrödinger equations in $ \mathbb{R}^2 $ with vanishing potentials. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022059 |
[18] |
Zijun Chen, Shengkun Wu. Local well-posedness for the Zakharov system in dimension $ d = 2, 3 $. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4307-4319. doi: 10.3934/cpaa.2021161 |
[19] |
Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079 |
[20] |
Antonio G. García. Sampling in $ \Lambda $-shift-invariant subspaces of Hilbert-Schmidt operators on $ L^2(\mathbb{R}^d) $. Mathematical Foundations of Computing, 2021, 4 (4) : 281-297. doi: 10.3934/mfc.2021019 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]