-
Previous Article
Exact travelling solution for a reaction-diffusion system with a piecewise constant production supported by a codimension-1 subspace
- CPAA Home
- This Issue
- Next Article
Global Well-posedness and Optimal Decay Rate of the Quasi-static Incompressible Navier–Stokes–Fourier–Maxwell–Poisson System
School of Mathematics, South China University of Technology, Guangzhou, 510640, China |
This work aims to establish global classical solution and optimal $ L^p $ ($ p\ge 2 $) time decay rate of the quasi-static incompressible Navier–Stokes–Fourier–Maxwell–Poisson system with small initial data in $ \mathbb{R}^3 $. The optimal $ L^2 $ time decay rate for higher order spatial derivatives is also given. To deal with the difficulty induced by the degeneration of the coupled Maxwell equation, we adopt the vector-valued form of the electric field $ E $ to obtain the time decay rate.
References:
[1] |
D. Arsénio and L. Saint-Raymond, From the Vlasov–Maxwell–Boltzmann system to incompressible viscous electro–magneto–hydrodynamics, in Monographs in Mathematics, European Mathematical Society, Zürich, (2019).
doi: 10.4171/193. |
[2] |
L. Caffarelli, R. Kohn and L. Nirenberg,
Partial regularity of suitable weak solutions of the Navier–Stokes equations, Commun. Pure Appl. Math, 35 (1982), 771-831.
doi: 10.1002/cpa.3160350604. |
[3] |
P. Constantin and C. Fefferman,
Direction of vorticity and the problem of global regularity for the Navier–Stokes equations, Indiana Univ. Math. J., 42 (1993), 775-789.
|
[4] |
R. Duan, H. Liu, S. Ukai and T. Yang,
Optimal $L^p$–$L^q$ convergence rates for the compressible Navier–Stokes equations with potential force, J. Differ. Equ., 238 (2007), 220-233.
doi: 10.1016/j.jde.2007.03.008. |
[5] |
R. Duan, S. Ukai, T. Yang and H. Zhao,
Optimal convergence rates for the compressible Navier–Stokes equations with potential forces, Math. Models Methods Appl. Sci., 17 (2007), 737-758.
doi: 10.1142/S021820250700208X. |
[6] |
R. Duan,
Green's function and large time behavior of the Navier–Stokes–Maxwell system, Anal. Appl., 10 (2012), 133-197.
doi: 10.1142/S0219530512500078. |
[7] |
Y. Feng, Y. Peng and S. Wang,
Asymptotic behavior of global smooth solutions for full compressible Navier–Stokes–Maxwell equations, Nonlinear Anal. RWA., 19 (2014), 105-116.
doi: 10.1016/j.nonrwa.2014.03.004. |
[8] |
Y. Fujigaki and T. Miyakawa,
Asymptotic profiles of nonstationary incompressible Navier–Stokes flows in the whole space, SIAM J. Math. Anal., 33 (2001), 523-544.
doi: 10.1137/S0036141000367072. |
[9] |
H. Fujita and T. Kato,
On the Navier–Stokes initial value problem. Ⅰ., Arch. Ration. Mech. Anal., 16 (1964), 269-315.
|
[10] |
P. Germain, S. Ibrahim and N. Masmoudi,
Well-posedness of the Navier–Stokes–Maxwell equations, Proc. Roy. Soc. Edinb. Sect. A, 144 (2014), 71-86.
doi: 10.1017/S0308210512001242. |
[11] |
W. Gong, F. Zhou, W. Wu and Q. Hu,
Optimal decay rate of the two-fluid incompressible Navier–Stokes–Fourier–Poisson system with Ohm's law, Nonlinear Analy. RWA., 63 (2022), 103392.
doi: 10.1016/j.nonrwa.2021.103392. |
[12] |
Y. Guo and Y. Wang,
Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differ. Equ., 37 (2012), 2165-2208.
doi: 10.1080/03605302.2012.696296. |
[13] |
D. Hoff and K. Zumbru,
Multi-dimensional diffusion waves for the Navier–Stokes equations of compressible flow, Indiana Univ. Math. J., 44 (1995), 603-676.
|
[14] |
E. Hopf,
Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.
doi: 10.1002/mana.3210040121. |
[15] |
S. Ibrahim and S. Keraani,
Global small solutions for the Navier–Stokes–Maxwell system, SIAM J. Math. Anal., 43 (2011), 2275-2295.
doi: 10.1137/100819813. |
[16] |
N. Jiang and Y. Luo,
Global classical solutions to the two-fluid incompressible Navier–Stokes–Maxwell system with Ohm's law, Commun. Math. Sci., 16 (2018), 561-578.
doi: 10.4310/CMS.2018.v16.n2.a12. |
[17] |
N. Jiang, Y. Luo and S. Tang,
Convergence from two-fluid incompressible Navier–Stokes–Maxwell system with Ohm's law to solenoidal Ohm's law: classical solutions, J. Differ. Equ., 269 (2020), 349-376.
doi: 10.1016/j.jde.2019.12.006. |
[18] |
R. Kajikiya and T. Miyakawa,
On $L^2$ decay of weak solutions of the Navier–Stokes equations in $ \mathbb{R}^n$, Math. Z., 192 (1986), 135-148.
|
[19] |
T. Kato and G. Ponce,
Commutator estimates and the Euler and Navier–Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704. |
[20] |
H. Koch and D. Tataru,
Well-posedness for the Navier–Stokes equations, Adv. Math., 157 (2001), 22-35.
doi: 10.1006/aima.2000.1937. |
[21] |
J. Leray,
Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[22] |
H. Li, A. Matsumura and G. Zhang,
Optimal decay rate of the compressible Navier–Stokes–Poisson system in $ \mathbb{R}^3$, Arch. Ration. Mech. Anal., 196 (2010), 681-713.
doi: 10.1007/s00205-009-0255-4. |
[23] |
F. Lin,
A new proof of the Caffarelli–Kohn–Nirenberg theorem, Commun. Pure Appl. Math., 51 (1998), 241-257.
doi: 10.1002/(sici)1097-0312(199803)51:3<241::aid-cpa2>3.0.co;2-a. |
[24] |
Q. Liu and Y. Su,
Large time behavior for the non-isentropic Navier–Stokes–Maxwell system, Math. Methods Appl. Sci., 40(3) (2017), 663-679.
doi: 10.1002/mma.3999. |
[25] |
N. Masmoudi,
Global well posedness for the Maxwell–Navier–Stokes system in 2D, J. Math. Pures Appl., 93(9) (2010), 559-571.
doi: 10.1016/j.matpur.2009.08.007. |
[26] |
A. Matsumura and T. Nishida,
The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids, Proc. Jpn. Acad. Ser-A, 55 (1979), 337-342.
doi: 10.3792/pjaa.55.337. |
[27] |
A. Matsumura and T. Nishida,
The initial value problem for the equation of motion of viscous and heat-conductive gases, J. Math. Kyoto. Univ., 20 (1980), 67-104.
doi: 10.1215/kjm/1250522322. |
[28] |
M. Oliver and E. Titi,
Remark on the rate of decay of higher order derivatives for solutions to the Navier–Stokes equations in $ \mathbb{R}^n$, J. Funct. Anal., 172 (2000), 1-18.
doi: 10.1006/jfan.1999.3550. |
[29] |
F. Planchon,
Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier–Stokes equations in $ \mathbb{R}^3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 319-336.
doi: 10.1016/S0294-1449(16)30107-X. |
[30] |
G. Ponce,
Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 339-418.
doi: 10.1016/0362-546X(85)90001-X. |
[31] |
M. Schonbek,
$L^2$ decay for weak solutions of the Navier–Stokes equations, Arch. Ration. Mech. Anal., 88 (1985), 209-222.
|
[32] |
M. Schonbek,
Large time behaviour of solutions to the Navier–Stokes equations, Commun. Partial Differ. Equ., 11 (1986), 733-763.
doi: 10.1080/03605308608820443. |
[33] |
W. Wang and X. Xu,
Large time behavior of solution for the full compressible Navier–Stokes–Maxwell system, Commun. Pure Appl. Anal., 14 (2015), 2283-2313.
doi: 10.3934/cpaa.2015.14.2283. |
[34] |
Y. Wang and Z. Tan,
Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256-271.
doi: 10.1016/j.jmaa.2011.01.006. |
[35] |
Y. Wang,
Decay of the Navier–Stokes–Poisson equations, J. Differ. Equ., 253 (2012), 273-297.
doi: 10.1016/j.jde.2012.03.006. |
[36] |
Z. Wu and W. Wang,
Pointwise estimates for bipolar compressible Navier–Stokes–Poisson system in dimension three, Arch. Ration. Mech. Anal., 226 (2017), 587-638.
doi: 10.1007/s00205-017-1140-1. |
[37] |
Z. Wu and W. Wang,
Generalized Huygens' principle for bipolar non-isentropic compressible Navier–Stokes–Poisson system in dimension three, J. Differ. Equ., 269 (2020), 7906-7930.
doi: 10.1016/j.jde.2020.05.046. |
[38] |
G. Zhang, H. Li and C. Zhu,
Optimal decay rate of the non-isentropic compressible Navier–Stokes–Poisson system in $ \mathbb{R}^3$, J. Differ. Equ., 250 (2011), 866-891.
doi: 10.1016/j.jde.2010.07.035. |
show all references
References:
[1] |
D. Arsénio and L. Saint-Raymond, From the Vlasov–Maxwell–Boltzmann system to incompressible viscous electro–magneto–hydrodynamics, in Monographs in Mathematics, European Mathematical Society, Zürich, (2019).
doi: 10.4171/193. |
[2] |
L. Caffarelli, R. Kohn and L. Nirenberg,
Partial regularity of suitable weak solutions of the Navier–Stokes equations, Commun. Pure Appl. Math, 35 (1982), 771-831.
doi: 10.1002/cpa.3160350604. |
[3] |
P. Constantin and C. Fefferman,
Direction of vorticity and the problem of global regularity for the Navier–Stokes equations, Indiana Univ. Math. J., 42 (1993), 775-789.
|
[4] |
R. Duan, H. Liu, S. Ukai and T. Yang,
Optimal $L^p$–$L^q$ convergence rates for the compressible Navier–Stokes equations with potential force, J. Differ. Equ., 238 (2007), 220-233.
doi: 10.1016/j.jde.2007.03.008. |
[5] |
R. Duan, S. Ukai, T. Yang and H. Zhao,
Optimal convergence rates for the compressible Navier–Stokes equations with potential forces, Math. Models Methods Appl. Sci., 17 (2007), 737-758.
doi: 10.1142/S021820250700208X. |
[6] |
R. Duan,
Green's function and large time behavior of the Navier–Stokes–Maxwell system, Anal. Appl., 10 (2012), 133-197.
doi: 10.1142/S0219530512500078. |
[7] |
Y. Feng, Y. Peng and S. Wang,
Asymptotic behavior of global smooth solutions for full compressible Navier–Stokes–Maxwell equations, Nonlinear Anal. RWA., 19 (2014), 105-116.
doi: 10.1016/j.nonrwa.2014.03.004. |
[8] |
Y. Fujigaki and T. Miyakawa,
Asymptotic profiles of nonstationary incompressible Navier–Stokes flows in the whole space, SIAM J. Math. Anal., 33 (2001), 523-544.
doi: 10.1137/S0036141000367072. |
[9] |
H. Fujita and T. Kato,
On the Navier–Stokes initial value problem. Ⅰ., Arch. Ration. Mech. Anal., 16 (1964), 269-315.
|
[10] |
P. Germain, S. Ibrahim and N. Masmoudi,
Well-posedness of the Navier–Stokes–Maxwell equations, Proc. Roy. Soc. Edinb. Sect. A, 144 (2014), 71-86.
doi: 10.1017/S0308210512001242. |
[11] |
W. Gong, F. Zhou, W. Wu and Q. Hu,
Optimal decay rate of the two-fluid incompressible Navier–Stokes–Fourier–Poisson system with Ohm's law, Nonlinear Analy. RWA., 63 (2022), 103392.
doi: 10.1016/j.nonrwa.2021.103392. |
[12] |
Y. Guo and Y. Wang,
Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differ. Equ., 37 (2012), 2165-2208.
doi: 10.1080/03605302.2012.696296. |
[13] |
D. Hoff and K. Zumbru,
Multi-dimensional diffusion waves for the Navier–Stokes equations of compressible flow, Indiana Univ. Math. J., 44 (1995), 603-676.
|
[14] |
E. Hopf,
Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.
doi: 10.1002/mana.3210040121. |
[15] |
S. Ibrahim and S. Keraani,
Global small solutions for the Navier–Stokes–Maxwell system, SIAM J. Math. Anal., 43 (2011), 2275-2295.
doi: 10.1137/100819813. |
[16] |
N. Jiang and Y. Luo,
Global classical solutions to the two-fluid incompressible Navier–Stokes–Maxwell system with Ohm's law, Commun. Math. Sci., 16 (2018), 561-578.
doi: 10.4310/CMS.2018.v16.n2.a12. |
[17] |
N. Jiang, Y. Luo and S. Tang,
Convergence from two-fluid incompressible Navier–Stokes–Maxwell system with Ohm's law to solenoidal Ohm's law: classical solutions, J. Differ. Equ., 269 (2020), 349-376.
doi: 10.1016/j.jde.2019.12.006. |
[18] |
R. Kajikiya and T. Miyakawa,
On $L^2$ decay of weak solutions of the Navier–Stokes equations in $ \mathbb{R}^n$, Math. Z., 192 (1986), 135-148.
|
[19] |
T. Kato and G. Ponce,
Commutator estimates and the Euler and Navier–Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704. |
[20] |
H. Koch and D. Tataru,
Well-posedness for the Navier–Stokes equations, Adv. Math., 157 (2001), 22-35.
doi: 10.1006/aima.2000.1937. |
[21] |
J. Leray,
Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[22] |
H. Li, A. Matsumura and G. Zhang,
Optimal decay rate of the compressible Navier–Stokes–Poisson system in $ \mathbb{R}^3$, Arch. Ration. Mech. Anal., 196 (2010), 681-713.
doi: 10.1007/s00205-009-0255-4. |
[23] |
F. Lin,
A new proof of the Caffarelli–Kohn–Nirenberg theorem, Commun. Pure Appl. Math., 51 (1998), 241-257.
doi: 10.1002/(sici)1097-0312(199803)51:3<241::aid-cpa2>3.0.co;2-a. |
[24] |
Q. Liu and Y. Su,
Large time behavior for the non-isentropic Navier–Stokes–Maxwell system, Math. Methods Appl. Sci., 40(3) (2017), 663-679.
doi: 10.1002/mma.3999. |
[25] |
N. Masmoudi,
Global well posedness for the Maxwell–Navier–Stokes system in 2D, J. Math. Pures Appl., 93(9) (2010), 559-571.
doi: 10.1016/j.matpur.2009.08.007. |
[26] |
A. Matsumura and T. Nishida,
The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids, Proc. Jpn. Acad. Ser-A, 55 (1979), 337-342.
doi: 10.3792/pjaa.55.337. |
[27] |
A. Matsumura and T. Nishida,
The initial value problem for the equation of motion of viscous and heat-conductive gases, J. Math. Kyoto. Univ., 20 (1980), 67-104.
doi: 10.1215/kjm/1250522322. |
[28] |
M. Oliver and E. Titi,
Remark on the rate of decay of higher order derivatives for solutions to the Navier–Stokes equations in $ \mathbb{R}^n$, J. Funct. Anal., 172 (2000), 1-18.
doi: 10.1006/jfan.1999.3550. |
[29] |
F. Planchon,
Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier–Stokes equations in $ \mathbb{R}^3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 319-336.
doi: 10.1016/S0294-1449(16)30107-X. |
[30] |
G. Ponce,
Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 339-418.
doi: 10.1016/0362-546X(85)90001-X. |
[31] |
M. Schonbek,
$L^2$ decay for weak solutions of the Navier–Stokes equations, Arch. Ration. Mech. Anal., 88 (1985), 209-222.
|
[32] |
M. Schonbek,
Large time behaviour of solutions to the Navier–Stokes equations, Commun. Partial Differ. Equ., 11 (1986), 733-763.
doi: 10.1080/03605308608820443. |
[33] |
W. Wang and X. Xu,
Large time behavior of solution for the full compressible Navier–Stokes–Maxwell system, Commun. Pure Appl. Anal., 14 (2015), 2283-2313.
doi: 10.3934/cpaa.2015.14.2283. |
[34] |
Y. Wang and Z. Tan,
Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256-271.
doi: 10.1016/j.jmaa.2011.01.006. |
[35] |
Y. Wang,
Decay of the Navier–Stokes–Poisson equations, J. Differ. Equ., 253 (2012), 273-297.
doi: 10.1016/j.jde.2012.03.006. |
[36] |
Z. Wu and W. Wang,
Pointwise estimates for bipolar compressible Navier–Stokes–Poisson system in dimension three, Arch. Ration. Mech. Anal., 226 (2017), 587-638.
doi: 10.1007/s00205-017-1140-1. |
[37] |
Z. Wu and W. Wang,
Generalized Huygens' principle for bipolar non-isentropic compressible Navier–Stokes–Poisson system in dimension three, J. Differ. Equ., 269 (2020), 7906-7930.
doi: 10.1016/j.jde.2020.05.046. |
[38] |
G. Zhang, H. Li and C. Zhu,
Optimal decay rate of the non-isentropic compressible Navier–Stokes–Poisson system in $ \mathbb{R}^3$, J. Differ. Equ., 250 (2011), 866-891.
doi: 10.1016/j.jde.2010.07.035. |
[1] |
Irina F. Sivergina, Michael P. Polis. About global null controllability of a quasi-static thermoelastic contact system. Conference Publications, 2005, 2005 (Special) : 816-823. doi: 10.3934/proc.2005.2005.816 |
[2] |
Zhendong Fang, Hao Wang. Convergence from two-species Vlasov-Poisson-Boltzmann system to two-fluid incompressible Navier-Stokes-Fourier-Poisson system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4347-4386. doi: 10.3934/dcdsb.2021231 |
[3] |
Guochun Wu, Han Wang, Yinghui Zhang. Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in $ \mathbb R^3 $. Electronic Research Archive, 2021, 29 (6) : 3889-3908. doi: 10.3934/era.2021067 |
[4] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[5] |
Dorothee Knees, Andreas Schröder. Computational aspects of quasi-static crack propagation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 63-99. doi: 10.3934/dcdss.2013.6.63 |
[6] |
Przemysław Górka. Quasi-static evolution of polyhedral crystals. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 309-320. doi: 10.3934/dcdsb.2008.9.309 |
[7] |
Lukáš Poul. Existence of weak solutions to the Navier-Stokes-Fourier system on Lipschitz domains. Conference Publications, 2007, 2007 (Special) : 834-843. doi: 10.3934/proc.2007.2007.834 |
[8] |
Shuai Liu, Yuzhu Wang. Optimal time-decay rate of global classical solutions to the generalized compressible Oldroyd-B model. Evolution Equations and Control Theory, 2022, 11 (4) : 1201-1227. doi: 10.3934/eect.2021041 |
[9] |
Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032 |
[10] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6057-6068. doi: 10.3934/dcdsb.2021002 |
[11] |
Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic and Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615 |
[12] |
Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic and Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002 |
[13] |
J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647 |
[14] |
Yanxia Niu, Yinxia Wang, Qingnian Zhang. Decay rate of global solutions to three dimensional generalized MHD system. Evolution Equations and Control Theory, 2021, 10 (2) : 249-258. doi: 10.3934/eect.2020064 |
[15] |
Mohamad Rachid. Incompressible Navier-Stokes-Fourier limit from the Landau equation. Kinetic and Related Models, 2021, 14 (4) : 599-638. doi: 10.3934/krm.2021017 |
[16] |
Christopher J. Larsen. Local minimality and crack prediction in quasi-static Griffith fracture evolution. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 121-129. doi: 10.3934/dcdss.2013.6.121 |
[17] |
Yuhui Chen, Ronghua Pan, Leilei Tong. The sharp time decay rate of the isentropic Navier-Stokes system in $ {\mathop{\mathbb R\kern 0pt}\nolimits}^3 $. Electronic Research Archive, 2021, 29 (2) : 1945-1967. doi: 10.3934/era.2020099 |
[18] |
Irene M. Gamba, Maria Pia Gualdani, Christof Sparber. A note on the time decay of solutions for the linearized Wigner-Poisson system. Kinetic and Related Models, 2009, 2 (1) : 181-189. doi: 10.3934/krm.2009.2.181 |
[19] |
Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic and Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043 |
[20] |
Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]