Article Contents
Article Contents

# On the spherical geopotential approximation for Saturn

The author is supported by NSF grant DMS-2102961

• In this paper, we show by means of a diffeomorphism that when approximating the planet Saturn by a sphere, the errors associated with the spherical geopotential approximation are so significant that this approach is rendered unsuitable for any rigorous mathematical analysis.

Mathematics Subject Classification: Primary: 86-10.

 Citation:

• Figure 1.  A cross section of Saturn depicting the composition of its interior

Figure 2.  The approximate dimensions, in kilometers, of Saturn's layers, measured along the equator; see [14]

Figure 3.  Saturn is approximated by an ellispoid $\mathcal{E}$, with polar radius $d_P'$ and equatorial radius $d_E'$. The polar radius is equal to only about $90.2\%$ of the equatorial one. In comparison, for Earth the polar radius is $99.67\%$ of the equatorial one

Figure 4.  The spherical and geopotential coordinate systems for fixed longitude $\varphi$. Here $\theta$ denotes the geocentric latitude of the point $Q$. The normal vector of the ellipsoid $\mathcal{E}$ at $Q$ intersects the equatorial plane at the focus point $A$, at an angle $\beta$, called the geodetic latitude angle of $P$

Figure 5.  Saturn viewed as an ellipsoid with a point $P$ on its surface expressed in terms of the geocentric latitude $\alpha$. The angle $\alpha$ is related to the geodetic latitude $\beta$ by (2.1)

Figure 6.  The spherical geopotential approximation for fixed longitude $\varphi$. The point $P$ on the ellipsoid is mapped into $\hat{P}$ on the sphere of radius $R'$. This is obtained by setting the geocentric latitude angle of $\hat{P}$ to be equal to the geodetic latitude of $P$

•  [1] A. Affholder, F. Guyot, B. Sauterey, R. Ferrière and S. Mazevet, Bayesian analysis of Enceladus's plume data to assess methanogenesis, Nat. Astron., 8 (2021), 805-814. [2] P. Benard, An oblate-spheroid geopotential approximation for global meteorology, Quart. J. Roy. Meterol. Soc., 140 (2014), 170-184. [3] H. Busemann and W. Feller, Krümmungseigenschaften konvexer Flächen, Acta Math., 66 (1936), 1-47.  doi: 10.1007/BF02546515. [4] A. Constantin and R. S. Johnson, On the modelling of large-scale atmospheric flow, J. Differ. Equ., 285 (2021), 751-798.  doi: 10.1016/j.jde.2021.03.019. [5] A. Constantin and R. S. Johnson, On the propagation of waves in the atmosphere, Proc. A, 477 (2021), 25 pp. [6] A. Constantin, D. G. Crowdy, V. S. Krishnamurthy and M. H. Wheeler, Stuart-type polar vortices on a rotating sphere, Discrete Cont. Dyn. Syst., 41 (2021), 201-215.  doi: 10.3934/dcds.2020263. [7] G. Faure and T. M. Mensing, Introduction to Planetary Science: The Geological Perspective, Springer, Dordrecht, The Netherlands, 2007. [8] R. A. Freedman and W. J. Kaufmann III, Universe: The Solar System, Freeman, New York, NY, 2002. [9] B. Galperin and  P.L. Read,  Zonal Jets: Phenomenology, Genesis and Physics, Cambridge University Press, Cambridge, 2019. [10] E. Gregersen,  The Outer Solar System, Britannica Educational Publishing, New York, NY, 2009. [11] P. Gruber,  Convex and Discrete Geometry, Springer-Verlag, Berlin-Heidelberg, 2007. [12] W. K. Hartmann, Moons and Planets, Brooks/Cole, Belmont, CA, 2005. [13] A. P. Ingersoll, et al., Atmospheres of the giant planets in The New Solar System, Sky Publishing, Cambridge, MA, 1999. [14] J. E. Klepeis, et al., Hydrogen-helium mixtures at megabars pressure: Implications for Jupiter and Saturn, Science, 254 (1991), 986-989. [15] J. Lunine, Saturn's Titan: A Strict Test for Life's Cosmic Ubiquity, Proceed. Amer. Phil. Soc., 153 (2009), 403-418. [16] NASA/Jet Propulsion Laboratory, Life on Titan? New clues to what's consuming hydrogen, acetylene on Saturn's moon, Sci. Daily, 2010. [17] A. Staniforth, Spherical and spheroidal geopotential approximations, Quart. J. Roy. Meterol. Soc., 140 (2014), 2685-2692.

Figures(6)