In this paper, we show by means of a diffeomorphism that when approximating the planet Saturn by a sphere, the errors associated with the spherical geopotential approximation are so significant that this approach is rendered unsuitable for any rigorous mathematical analysis.
Citation: |
Figure 2. The approximate dimensions, in kilometers, of Saturn's layers, measured along the equator; see [14]
Figure 4. The spherical and geopotential coordinate systems for fixed longitude $ \varphi $. Here $ \theta $ denotes the geocentric latitude of the point $ Q $. The normal vector of the ellipsoid $ \mathcal{E} $ at $ Q $ intersects the equatorial plane at the focus point $ A $, at an angle $ \beta $, called the geodetic latitude angle of $ P $
[1] | A. Affholder, F. Guyot, B. Sauterey, R. Ferrière and S. Mazevet, Bayesian analysis of Enceladus's plume data to assess methanogenesis, Nat. Astron., 8 (2021), 805-814. |
[2] | P. Benard, An oblate-spheroid geopotential approximation for global meteorology, Quart. J. Roy. Meterol. Soc., 140 (2014), 170-184. |
[3] | H. Busemann and W. Feller, Krümmungseigenschaften konvexer Flächen, Acta Math., 66 (1936), 1-47. doi: 10.1007/BF02546515. |
[4] | A. Constantin and R. S. Johnson, On the modelling of large-scale atmospheric flow, J. Differ. Equ., 285 (2021), 751-798. doi: 10.1016/j.jde.2021.03.019. |
[5] | A. Constantin and R. S. Johnson, On the propagation of waves in the atmosphere, Proc. A, 477 (2021), 25 pp. |
[6] | A. Constantin, D. G. Crowdy, V. S. Krishnamurthy and M. H. Wheeler, Stuart-type polar vortices on a rotating sphere, Discrete Cont. Dyn. Syst., 41 (2021), 201-215. doi: 10.3934/dcds.2020263. |
[7] | G. Faure and T. M. Mensing, Introduction to Planetary Science: The Geological Perspective, Springer, Dordrecht, The Netherlands, 2007. |
[8] | R. A. Freedman and W. J. Kaufmann III, Universe: The Solar System, Freeman, New York, NY, 2002. |
[9] | B. Galperin and P.L. Read, Zonal Jets: Phenomenology, Genesis and Physics, Cambridge University Press, Cambridge, 2019. |
[10] | E. Gregersen, The Outer Solar System, Britannica Educational Publishing, New York, NY, 2009. |
[11] | P. Gruber, Convex and Discrete Geometry, Springer-Verlag, Berlin-Heidelberg, 2007. |
[12] | W. K. Hartmann, Moons and Planets, Brooks/Cole, Belmont, CA, 2005. |
[13] | A. P. Ingersoll, et al., Atmospheres of the giant planets in The New Solar System, Sky Publishing, Cambridge, MA, 1999. |
[14] | J. E. Klepeis, et al., Hydrogen-helium mixtures at megabars pressure: Implications for Jupiter and Saturn, Science, 254 (1991), 986-989. |
[15] | J. Lunine, Saturn's Titan: A Strict Test for Life's Cosmic Ubiquity, Proceed. Amer. Phil. Soc., 153 (2009), 403-418. |
[16] | NASA/Jet Propulsion Laboratory, Life on Titan? New clues to what's consuming hydrogen, acetylene on Saturn's moon, Sci. Daily, 2010. |
[17] | A. Staniforth, Spherical and spheroidal geopotential approximations, Quart. J. Roy. Meterol. Soc., 140 (2014), 2685-2692. |
A cross section of Saturn depicting the composition of its interior
The approximate dimensions, in kilometers, of Saturn's layers, measured along the equator; see [14]
Saturn is approximated by an ellispoid
The spherical and geopotential coordinate systems for fixed longitude
Saturn viewed as an ellipsoid with a point
The spherical geopotential approximation for fixed longitude