\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the spherical geopotential approximation for Saturn

The author is supported by NSF grant DMS-2102961

Abstract / Introduction Full Text(HTML) Figure(6) Related Papers Cited by
  • In this paper, we show by means of a diffeomorphism that when approximating the planet Saturn by a sphere, the errors associated with the spherical geopotential approximation are so significant that this approach is rendered unsuitable for any rigorous mathematical analysis.

    Mathematics Subject Classification: Primary: 86-10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A cross section of Saturn depicting the composition of its interior

    Figure 2.  The approximate dimensions, in kilometers, of Saturn's layers, measured along the equator; see [14]

    Figure 3.  Saturn is approximated by an ellispoid $ \mathcal{E} $, with polar radius $ d_P' $ and equatorial radius $ d_E' $. The polar radius is equal to only about $ 90.2\% $ of the equatorial one. In comparison, for Earth the polar radius is $ 99.67\% $ of the equatorial one

    Figure 4.  The spherical and geopotential coordinate systems for fixed longitude $ \varphi $. Here $ \theta $ denotes the geocentric latitude of the point $ Q $. The normal vector of the ellipsoid $ \mathcal{E} $ at $ Q $ intersects the equatorial plane at the focus point $ A $, at an angle $ \beta $, called the geodetic latitude angle of $ P $

    Figure 5.  Saturn viewed as an ellipsoid with a point $ P $ on its surface expressed in terms of the geocentric latitude $ \alpha $. The angle $ \alpha $ is related to the geodetic latitude $ \beta $ by (2.1)

    Figure 6.  The spherical geopotential approximation for fixed longitude $ \varphi $. The point $ P $ on the ellipsoid is mapped into $ \hat{P} $ on the sphere of radius $ R' $. This is obtained by setting the geocentric latitude angle of $ \hat{P} $ to be equal to the geodetic latitude of $ P $

  • [1] A. AffholderF. GuyotB. SautereyR. Ferrière and S. Mazevet, Bayesian analysis of Enceladus's plume data to assess methanogenesis, Nat. Astron., 8 (2021), 805-814. 
    [2] P. Benard, An oblate-spheroid geopotential approximation for global meteorology, Quart. J. Roy. Meterol. Soc., 140 (2014), 170-184. 
    [3] H. Busemann and W. Feller, Krümmungseigenschaften konvexer Flächen, Acta Math., 66 (1936), 1-47.  doi: 10.1007/BF02546515.
    [4] A. Constantin and R. S. Johnson, On the modelling of large-scale atmospheric flow, J. Differ. Equ., 285 (2021), 751-798.  doi: 10.1016/j.jde.2021.03.019.
    [5] A. Constantin and R. S. Johnson, On the propagation of waves in the atmosphere, Proc. A, 477 (2021), 25 pp.
    [6] A. ConstantinD. G. CrowdyV. S. Krishnamurthy and M. H. Wheeler, Stuart-type polar vortices on a rotating sphere, Discrete Cont. Dyn. Syst., 41 (2021), 201-215.  doi: 10.3934/dcds.2020263.
    [7] G. Faure and T. M. Mensing, Introduction to Planetary Science: The Geological Perspective, Springer, Dordrecht, The Netherlands, 2007.
    [8] R. A. Freedman and W. J. Kaufmann III, Universe: The Solar System, Freeman, New York, NY, 2002.
    [9] B. Galperin and  P.L. ReadZonal Jets: Phenomenology, Genesis and Physics, Cambridge University Press, Cambridge, 2019. 
    [10] E. GregersenThe Outer Solar System, Britannica Educational Publishing, New York, NY, 2009. 
    [11] P. GruberConvex and Discrete Geometry, Springer-Verlag, Berlin-Heidelberg, 2007. 
    [12] W. K. Hartmann, Moons and Planets, Brooks/Cole, Belmont, CA, 2005.
    [13] A. P. Ingersoll, et al., Atmospheres of the giant planets in The New Solar System, Sky Publishing, Cambridge, MA, 1999.
    [14] J. E. Klepeis, et al., Hydrogen-helium mixtures at megabars pressure: Implications for Jupiter and Saturn, Science, 254 (1991), 986-989. 
    [15] J. Lunine, Saturn's Titan: A Strict Test for Life's Cosmic Ubiquity, Proceed. Amer. Phil. Soc., 153 (2009), 403-418. 
    [16] NASA/Jet Propulsion Laboratory, Life on Titan? New clues to what's consuming hydrogen, acetylene on Saturn's moon, Sci. Daily, 2010.
    [17] A. Staniforth, Spherical and spheroidal geopotential approximations, Quart. J. Roy. Meterol. Soc., 140 (2014), 2685-2692. 
  • 加载中

Figures(6)

SHARE

Article Metrics

HTML views(2524) PDF downloads(247) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return