July  2022, 21(7): 2327-2336. doi: 10.3934/cpaa.2022035

On the spherical geopotential approximation for Saturn

Department of Mathematics, Brown University, Box 1917, Providence, RI 02912, USA

Received  October 2021 Revised  December 2021 Published  July 2022 Early access  February 2022

Fund Project: The author is supported by NSF grant DMS-2102961

In this paper, we show by means of a diffeomorphism that when approximating the planet Saturn by a sphere, the errors associated with the spherical geopotential approximation are so significant that this approach is rendered unsuitable for any rigorous mathematical analysis.

Citation: Susanna V. Haziot. On the spherical geopotential approximation for Saturn. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2327-2336. doi: 10.3934/cpaa.2022035
References:
[1]

A. AffholderF. GuyotB. SautereyR. Ferrière and S. Mazevet, Bayesian analysis of Enceladus's plume data to assess methanogenesis, Nat. Astron., 8 (2021), 805-814. 

[2]

P. Benard, An oblate-spheroid geopotential approximation for global meteorology, Quart. J. Roy. Meterol. Soc., 140 (2014), 170-184. 

[3]

H. Busemann and W. Feller, Krümmungseigenschaften konvexer Flächen, Acta Math., 66 (1936), 1-47.  doi: 10.1007/BF02546515.

[4]

A. Constantin and R. S. Johnson, On the modelling of large-scale atmospheric flow, J. Differ. Equ., 285 (2021), 751-798.  doi: 10.1016/j.jde.2021.03.019.

[5]

A. Constantin and R. S. Johnson, On the propagation of waves in the atmosphere, Proc. A, 477 (2021), 25 pp.

[6]

A. ConstantinD. G. CrowdyV. S. Krishnamurthy and M. H. Wheeler, Stuart-type polar vortices on a rotating sphere, Discrete Cont. Dyn. Syst., 41 (2021), 201-215.  doi: 10.3934/dcds.2020263.

[7]

G. Faure and T. M. Mensing, Introduction to Planetary Science: The Geological Perspective, Springer, Dordrecht, The Netherlands, 2007.

[8]

R. A. Freedman and W. J. Kaufmann III, Universe: The Solar System, Freeman, New York, NY, 2002.

[9] B. Galperin and P.L. Read, Zonal Jets: Phenomenology, Genesis and Physics, Cambridge University Press, Cambridge, 2019. 
[10] E. Gregersen, The Outer Solar System, Britannica Educational Publishing, New York, NY, 2009. 
[11] P. Gruber, Convex and Discrete Geometry, Springer-Verlag, Berlin-Heidelberg, 2007. 
[12]

W. K. Hartmann, Moons and Planets, Brooks/Cole, Belmont, CA, 2005.

[13]

A. P. Ingersoll, et al., Atmospheres of the giant planets in The New Solar System, Sky Publishing, Cambridge, MA, 1999.

[14]

J. E. Klepeis, Hydrogen-helium mixtures at megabars pressure: Implications for Jupiter and Saturn, Science, 254 (1991), 986-989. 

[15]

J. Lunine, Saturn's Titan: A Strict Test for Life's Cosmic Ubiquity, Proceed. Amer. Phil. Soc., 153 (2009), 403-418. 

[16]

NASA/Jet Propulsion Laboratory, Life on Titan? New clues to what's consuming hydrogen, acetylene on Saturn's moon, Sci. Daily, 2010.

[17]

A. Staniforth, Spherical and spheroidal geopotential approximations, Quart. J. Roy. Meterol. Soc., 140 (2014), 2685-2692. 

show all references

References:
[1]

A. AffholderF. GuyotB. SautereyR. Ferrière and S. Mazevet, Bayesian analysis of Enceladus's plume data to assess methanogenesis, Nat. Astron., 8 (2021), 805-814. 

[2]

P. Benard, An oblate-spheroid geopotential approximation for global meteorology, Quart. J. Roy. Meterol. Soc., 140 (2014), 170-184. 

[3]

H. Busemann and W. Feller, Krümmungseigenschaften konvexer Flächen, Acta Math., 66 (1936), 1-47.  doi: 10.1007/BF02546515.

[4]

A. Constantin and R. S. Johnson, On the modelling of large-scale atmospheric flow, J. Differ. Equ., 285 (2021), 751-798.  doi: 10.1016/j.jde.2021.03.019.

[5]

A. Constantin and R. S. Johnson, On the propagation of waves in the atmosphere, Proc. A, 477 (2021), 25 pp.

[6]

A. ConstantinD. G. CrowdyV. S. Krishnamurthy and M. H. Wheeler, Stuart-type polar vortices on a rotating sphere, Discrete Cont. Dyn. Syst., 41 (2021), 201-215.  doi: 10.3934/dcds.2020263.

[7]

G. Faure and T. M. Mensing, Introduction to Planetary Science: The Geological Perspective, Springer, Dordrecht, The Netherlands, 2007.

[8]

R. A. Freedman and W. J. Kaufmann III, Universe: The Solar System, Freeman, New York, NY, 2002.

[9] B. Galperin and P.L. Read, Zonal Jets: Phenomenology, Genesis and Physics, Cambridge University Press, Cambridge, 2019. 
[10] E. Gregersen, The Outer Solar System, Britannica Educational Publishing, New York, NY, 2009. 
[11] P. Gruber, Convex and Discrete Geometry, Springer-Verlag, Berlin-Heidelberg, 2007. 
[12]

W. K. Hartmann, Moons and Planets, Brooks/Cole, Belmont, CA, 2005.

[13]

A. P. Ingersoll, et al., Atmospheres of the giant planets in The New Solar System, Sky Publishing, Cambridge, MA, 1999.

[14]

J. E. Klepeis, Hydrogen-helium mixtures at megabars pressure: Implications for Jupiter and Saturn, Science, 254 (1991), 986-989. 

[15]

J. Lunine, Saturn's Titan: A Strict Test for Life's Cosmic Ubiquity, Proceed. Amer. Phil. Soc., 153 (2009), 403-418. 

[16]

NASA/Jet Propulsion Laboratory, Life on Titan? New clues to what's consuming hydrogen, acetylene on Saturn's moon, Sci. Daily, 2010.

[17]

A. Staniforth, Spherical and spheroidal geopotential approximations, Quart. J. Roy. Meterol. Soc., 140 (2014), 2685-2692. 

Figure 1.  A cross section of Saturn depicting the composition of its interior
Figure 2.  The approximate dimensions, in kilometers, of Saturn's layers, measured along the equator; see [14]
Figure 3.  Saturn is approximated by an ellispoid $ \mathcal{E} $, with polar radius $ d_P' $ and equatorial radius $ d_E' $. The polar radius is equal to only about $ 90.2\% $ of the equatorial one. In comparison, for Earth the polar radius is $ 99.67\% $ of the equatorial one
Figure 4.  The spherical and geopotential coordinate systems for fixed longitude $ \varphi $. Here $ \theta $ denotes the geocentric latitude of the point $ Q $. The normal vector of the ellipsoid $ \mathcal{E} $ at $ Q $ intersects the equatorial plane at the focus point $ A $, at an angle $ \beta $, called the geodetic latitude angle of $ P $
Figure 5.  Saturn viewed as an ellipsoid with a point $ P $ on its surface expressed in terms of the geocentric latitude $ \alpha $. The angle $ \alpha $ is related to the geodetic latitude $ \beta $ by (2.1)
Figure 6.  The spherical geopotential approximation for fixed longitude $ \varphi $. The point $ P $ on the ellipsoid is mapped into $ \hat{P} $ on the sphere of radius $ R' $. This is obtained by setting the geocentric latitude angle of $ \hat{P} $ to be equal to the geodetic latitude of $ P $
[1]

David Julitz. Numerical approximation of atmospheric-ocean models with subdivision algorithm. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 429-447. doi: 10.3934/dcds.2007.18.429

[2]

Jinrong Wang, Michal Fečkan, Yi Guan. Constant vorticity atmospheric Ekman flows in the $ f- $plane approximation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022012

[3]

Chenchen Wu, Wei Lv, Yujie Wang, Dachuan Xu. Approximation algorithm for spherical $ k $-means problem with penalty. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2277-2287. doi: 10.3934/jimo.2021067

[4]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427

[5]

Gui-Qiang Chen, Bo Su. A viscous approximation for a multidimensional unsteady Euler flow: Existence theorem for potential flow. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1587-1606. doi: 10.3934/dcds.2003.9.1587

[6]

B.G. Fitzpatrick, M.A. Jeffris. On continuous dependence under approximation for groundwater flow models with distributed and pointwise observations. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 141-149. doi: 10.3934/dcds.1996.2.141

[7]

Yifei Lou, Sung Ha Kang, Stefano Soatto, Andrea L. Bertozzi. Video stabilization of atmospheric turbulence distortion. Inverse Problems and Imaging, 2013, 7 (3) : 839-861. doi: 10.3934/ipi.2013.7.839

[8]

Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131-149. doi: 10.3934/amc.2007.1.131

[9]

Tian Ma, Shouhong Wang. Tropical atmospheric circulations: Dynamic stability and transitions. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1399-1417. doi: 10.3934/dcds.2010.26.1399

[10]

Daniela Saxenhuber, Ronny Ramlau. A gradient-based method for atmospheric tomography. Inverse Problems and Imaging, 2016, 10 (3) : 781-805. doi: 10.3934/ipi.2016021

[11]

Xiuqing Wang, Yuming Qin, Alain Miranville. Approximation of the trajectory attractor of the 3D smectic-A liquid crystal flow equations. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3805-3827. doi: 10.3934/cpaa.2020168

[12]

Helge Holden, Nils Henrik Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks and Heterogeneous Media, 2018, 13 (3) : 409-421. doi: 10.3934/nhm.2018018

[13]

Marie Henry, Danielle Hilhorst, Masayasu Mimura. A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 125-154. doi: 10.3934/dcdss.2011.4.125

[14]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[15]

Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310-318. doi: 10.3934/proc.2001.2001.310

[16]

Aravind Asok, James Parson. Equivariant sheaves on some spherical varieties. Electronic Research Announcements, 2011, 18: 119-130. doi: 10.3934/era.2011.18.119

[17]

Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100

[18]

Linh V. Nguyen. Spherical mean transform: A PDE approach. Inverse Problems and Imaging, 2013, 7 (1) : 243-252. doi: 10.3934/ipi.2013.7.243

[19]

Shaobo Lin, Xingping Sun, Zongben Xu. Discretizing spherical integrals and its applications. Conference Publications, 2013, 2013 (special) : 499-514. doi: 10.3934/proc.2013.2013.499

[20]

Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems and Imaging, 2009, 3 (3) : 373-382. doi: 10.3934/ipi.2009.3.373

2021 Impact Factor: 1.273

Article outline

Figures and Tables

[Back to Top]