In this paper, we consider the following general pseudo-relativistic Schrödinger equation with indefinite nonlinearities:
$ (-\Delta+m^{2})^{s}u = a(x_1)f\left(u,\nabla u\right),\quad {\rm{in}} \,\,\mathbb R^{N}, $
where $ s\in(0,1) $, mass $ m>0 $ and $ a $ is a non-decreasing functions. We prove the nonexistence and the monotonicity of the positive bounded solution for the above equation via the direct method of moving planes.
Citation: |
[1] |
V. Ambrosio, Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator, J. Math. Phys., 57 (2016), 18 pp.
doi: 10.1063/1.4949352.![]() ![]() ![]() ![]() |
[2] |
H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal., 4 (1994), 59-78.
doi: 10.12775/TMNA.1994.023.![]() ![]() ![]() |
[3] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math, 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304.![]() ![]() ![]() |
[4] |
W. Chen and C. Li, On Nirenberg and related problems - a necessary and sufficient condition, Commun. Pure Appl. Math, 48 (1995), 657-667.
doi: 10.1002/cpa.3160480606.![]() ![]() ![]() |
[5] |
W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038.![]() ![]() ![]() |
[6] |
W. Chen, Y. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.
doi: 10.1016/j.jfa.2017.02.022.![]() ![]() ![]() |
[7] |
W. Chen, C. Li and J. Zhu, Fractional equations with indefinite nonlinearities, Discrete Contin. Dyn. Syst., 39 (2019), 1257-1268.
doi: 10.3934/dcds.2019054.![]() ![]() ![]() |
[8] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
[9] |
W. Choi and J. Seok, Nonrelativistic limit of standing waves for pseudo-relativistic nonlinear Schrödinger equations, J. Math. Phys., 57 (2016), 15 pp.
doi: 10.1063/1.4941037.![]() ![]() ![]() ![]() |
[10] |
S. Y. A. Chang and P. C. Yang, On uniqueness of solutions of $n$-th order differential equations in conformal geometry, Math. Res. Lett., 4 (1997), 91-102.
doi: 10.4310/MRL.1997.v4.n1.a9.![]() ![]() ![]() |
[11] |
W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differ. Equ., 260 (2016), 475-4785.
doi: 10.1016/j.jde.2015.11.029.![]() ![]() ![]() |
[12] |
W. Dai and G. Qin, Classification of nonnegative classical solutions to third-order equations, Adv. Math., 328 (2018), 822-857.
doi: 10.1016/j.aim.2018.02.016.![]() ![]() ![]() |
[13] |
W. Dai, G. Qin and D. Wu, Direct methods for pseudo-relativistic Schrödinger operators, J. Geom. Anal., 31 (2021), 5555-5618.
doi: 10.1007/s12220-020-00492-1.![]() ![]() ![]() |
[14] |
A. Dall'Acqua, T. Sorensen and E. Stockmeyer, Hartree-Fock theory for pseudo-relativistic atoms, Ann. Henri Poincare, 9 (2008), 711-742.
doi: 10.1007/s00023-008-0370-z.![]() ![]() ![]() |
[15] |
M. M. Fall and V. Felli, Sharp essential self-adjointness of relativistic Schrödinger operators with a singular potential, J. Funct. Anal., 267 (2014), 1851-1877.
doi: 10.1016/j.jfa.2014.06.010.![]() ![]() ![]() |
[16] |
M. M. Fall and V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst.-A, 35 (2015), 5827-5867.
doi: 10.3934/dcds.2015.35.5827.![]() ![]() ![]() |
[17] |
J. Fröhlich, B. L. G. Jonsson and E. Lenzmann, Boson stars as solitary waves, Commun. Math. Phys, 274 (2007), 1-30.
doi: 10.1007/s00220-007-0272-9.![]() ![]() ![]() |
[18] |
J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars, Commun. Pure Appl. Math, 60 (2007), 1691-1705.
doi: 10.1002/cpa.20186.![]() ![]() ![]() |
[19] |
Y. Guo and S. Peng, Symmetry and monotonicity of nonnegative solutions to pseudo-relativistic Choquard equations, Z. Angew. Math. Phys., 72 (2021), 20 pp.
doi: 10.1007/s00033-021-01551-5.![]() ![]() ![]() ![]() |
[20] |
E. H. Lieb and W. E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy, Ann. Phys., 155 (1984), 494-512.
doi: 10.1016/0003-4916(84)90010-1.![]() ![]() ![]() |
[21] |
E. H. Lieb and H. T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Commun. Math. Phys., 112 (1987), 147-174.
![]() ![]() |