
-
Previous Article
Two-sided estimates of total bandwidth for Schrödinger operators on periodic graphs
- CPAA Home
- This Issue
-
Next Article
Semi-classical states for fractional Schrödinger equations with magnetic fields and fast decaying potentials
Analysis of one-sided 1-D fractional diffusion operator
1. | Department of Mathematics and Statistics, University of Nevada Reno, NV 89557, USA |
2. | Department of Mathematics, Sakarya University, 54050, Sakarya, Turkey |
This work establishes the parallel between the properties of classic elliptic PDEs and the one-sided 1-D fractional diffusion equation, that includes the characterization of fractional Sobolev spaces in terms of fractional Riemann-Liouville (R-L) derivatives, variational formulation, maximum principle, Hopf's Lemma, spectral analysis, and theory on the principal eigenvalue and its characterization, etc. As an application, the developed results provide a novel perspective to study the distribution of complex roots of a class of Mittag-Leffler functions and, furthermore, prove the existence of real roots.
References:
[1] |
T. Aleroev and E. Kekharsaeva,
Boundary value problems for differential equations with fractional derivatives, Integral Trans. Spec. Funct., 28 (2017), 900-908.
doi: 10.1080/10652469.2017.1381844. |
[2] |
T. Aleroev and H. Aleroeva, Problems of Sturm-Liouville type for differential equations with fractional derivatives, in Handbook of Fractional Calculus with Applications, De Gruyter, Berlin, 2019. |
[3] |
M. Al-Qurashi and L. Ragoub,
Lyapunov-type inequality for a Riemann-Liouville fractional differential boundary value problem, Hacet. J. Math. Stat., 47 (2018), 1447-1452.
|
[4] |
M. M. Džrbašjan,
A boundary value problem for a Sturm-Liouville type differential operator of fractional order, Izv. Akad. Nauk Armjan. SSR Ser. Mat., 5 (1970), 71-96.
|
[5] |
V. J. Ervin and J. P. Roop,
Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equ., 22 (2006), 558-576.
doi: 10.1002/num.20112. |
[6] |
V. J. Ervin and J. P. Roop,
Variational solution of fractional advection dispersion equations on bounded domains in ${\mathbb{R}}^d$, Numer. Methods Partial Differ. Equ., 23 (2007), 256-281.
doi: 10.1002/num.20169. |
[7] |
V. J. Ervin, N. Heuer and J. P. Roop,
Regularity of the solution to 1-D fractional order diffusion equations, Math. Comp., 87 (2018), 2273-2294.
doi: 10.1090/mcom/3295. |
[8] |
V. J. Ervin,
Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces, J. Differ. Equ., 278 (2021), 294-325.
doi: 10.1016/j.jde.2020.12.034. |
[9] |
L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, American Mathematical Society, Providence, RI, 2010. |
[10] |
R. A. C. Ferreira,
A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal., 16 (2013), 978-984.
doi: 10.2478/s13540-013-0060-5. |
[11] |
G. B. Folland, Real Analysis, 2$^{nd}$ edition, John Wiley & Sons, Inc., New York, 1999.
![]() ![]() |
[12] |
V. Ginting and Y. Li,
On the fractional diffusion-advection-reaction equation in ${\mathbb{R}} $, Fract. Calc. Appl. Anal., 22 (2019), 1039-1062.
doi: 10.1515/fca-2019-0055. |
[13] |
R. Gorenflo, A. A. Kilbas, F. Mainardi and S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, 2$^{nd}$ edition, Springer, Berlin, 2020. |
[14] |
G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, 2$^{nd}$ edition, Springer, Cham, 2021. |
[15] |
L. Jia, H. Chen and V. J. Ervin, Existence and regularity of solutions to 1-D fractional order diffusion equations, Electron. J. Differ. Equ., (2019), 21 pp. |
[16] |
B. Jin, R. Lazarov, J. Pasciak and W. Rundell,
Variational formulation of problems involving fractional order differential operators, Math. Comp., 84 (2015), 2665-2700.
doi: 10.1090/mcom/2960. |
[17] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006. |
[18] |
Y. Li,
On the decomposition of solutions: from fractional diffusion to fractional Laplacian, Fract. Calc. Appl. Anal., 24 (2021), 1571-1600.
doi: 10.1515/fca-2021-0066. |
[19] |
Y. Li, Integral representation bound of the true solution to the BVP of double-sided fractional diffusion advection reaction equation, Rend. Circ. Mat. Palermo, II. Ser, (2021), 22 pp.
doi: 10.1007/s12215-021-00592-z. |
[20] |
R. Meise and D. Vogt, Introduction to Functional Analysis, The Clarendon Press, Oxford University Press, New York, 1997.
![]() ![]() |
[21] |
N. I. Muskhelishvili, Singular Integral Equations. Boundary Problems of Function Theory and Their Application to Mathematical Physics, P. Noordhoff N. V., Groningen, 1953. |
[22] |
B. E. Petersen, Introduction to the Fourier Transform & Pseudodifferential Operators, Pitman (Advanced Publishing Program), Boston, MA, 1983. |
[23] |
W. Rudin, Real and Complex Analysis, 3$^{nd}$ edition, McGraw-Hill Book Co., New York, 1987. |
[24] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[25] |
I. Tikhonov and Y. S. Éidel'man,
Inverse scattering transform for differential equations in Banach space and the distribution of zeros of an entire Mittag-Leffler type function, Differ. Uravn., 38 (2002), 637-644.
|
[26] |
S. Yang, H. Chen, V. J. Ervin and H. Wang, Solvability and approximation of two-side conservative fractional diffusion problems with variable-coefficient based on least-squares, Appl. Math. Comput., 406 (2021), 21 pp.
doi: 10.1016/j.amc.2021.126229. |
[27] |
X. Zheng, V. J. Ervin and H. Wang,
Wellposedness of the two-sided variable coefficient Caputo flux fractional diffusion equation and error estimate of its spectral approximation, Appl. Numer. Math., 153 (2020), 234-247.
doi: 10.1016/j.apnum.2020.02.019. |
[28] |
X. Zheng, V. J. Ervin and H. Wang,
Numerical approximations for the variable coefficient fractional diffusion equations with non-smooth data, Comput. Methods Appl. Math., 20 (2020), 573-589.
doi: 10.1515/cmam-2019-0038. |
[29] |
X. Zheng, V. J. Ervin and H. Wang, Optimal Petrov-Galerkin spectral approximation method for the fractional diffusion, advection, reaction equation on a bounded interval, J. Sci. Comput., 86 (2021), 22 pp.
doi: 10.1007/s10915-020-01366-y. |
show all references
References:
[1] |
T. Aleroev and E. Kekharsaeva,
Boundary value problems for differential equations with fractional derivatives, Integral Trans. Spec. Funct., 28 (2017), 900-908.
doi: 10.1080/10652469.2017.1381844. |
[2] |
T. Aleroev and H. Aleroeva, Problems of Sturm-Liouville type for differential equations with fractional derivatives, in Handbook of Fractional Calculus with Applications, De Gruyter, Berlin, 2019. |
[3] |
M. Al-Qurashi and L. Ragoub,
Lyapunov-type inequality for a Riemann-Liouville fractional differential boundary value problem, Hacet. J. Math. Stat., 47 (2018), 1447-1452.
|
[4] |
M. M. Džrbašjan,
A boundary value problem for a Sturm-Liouville type differential operator of fractional order, Izv. Akad. Nauk Armjan. SSR Ser. Mat., 5 (1970), 71-96.
|
[5] |
V. J. Ervin and J. P. Roop,
Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equ., 22 (2006), 558-576.
doi: 10.1002/num.20112. |
[6] |
V. J. Ervin and J. P. Roop,
Variational solution of fractional advection dispersion equations on bounded domains in ${\mathbb{R}}^d$, Numer. Methods Partial Differ. Equ., 23 (2007), 256-281.
doi: 10.1002/num.20169. |
[7] |
V. J. Ervin, N. Heuer and J. P. Roop,
Regularity of the solution to 1-D fractional order diffusion equations, Math. Comp., 87 (2018), 2273-2294.
doi: 10.1090/mcom/3295. |
[8] |
V. J. Ervin,
Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces, J. Differ. Equ., 278 (2021), 294-325.
doi: 10.1016/j.jde.2020.12.034. |
[9] |
L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, American Mathematical Society, Providence, RI, 2010. |
[10] |
R. A. C. Ferreira,
A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal., 16 (2013), 978-984.
doi: 10.2478/s13540-013-0060-5. |
[11] |
G. B. Folland, Real Analysis, 2$^{nd}$ edition, John Wiley & Sons, Inc., New York, 1999.
![]() ![]() |
[12] |
V. Ginting and Y. Li,
On the fractional diffusion-advection-reaction equation in ${\mathbb{R}} $, Fract. Calc. Appl. Anal., 22 (2019), 1039-1062.
doi: 10.1515/fca-2019-0055. |
[13] |
R. Gorenflo, A. A. Kilbas, F. Mainardi and S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, 2$^{nd}$ edition, Springer, Berlin, 2020. |
[14] |
G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, 2$^{nd}$ edition, Springer, Cham, 2021. |
[15] |
L. Jia, H. Chen and V. J. Ervin, Existence and regularity of solutions to 1-D fractional order diffusion equations, Electron. J. Differ. Equ., (2019), 21 pp. |
[16] |
B. Jin, R. Lazarov, J. Pasciak and W. Rundell,
Variational formulation of problems involving fractional order differential operators, Math. Comp., 84 (2015), 2665-2700.
doi: 10.1090/mcom/2960. |
[17] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006. |
[18] |
Y. Li,
On the decomposition of solutions: from fractional diffusion to fractional Laplacian, Fract. Calc. Appl. Anal., 24 (2021), 1571-1600.
doi: 10.1515/fca-2021-0066. |
[19] |
Y. Li, Integral representation bound of the true solution to the BVP of double-sided fractional diffusion advection reaction equation, Rend. Circ. Mat. Palermo, II. Ser, (2021), 22 pp.
doi: 10.1007/s12215-021-00592-z. |
[20] |
R. Meise and D. Vogt, Introduction to Functional Analysis, The Clarendon Press, Oxford University Press, New York, 1997.
![]() ![]() |
[21] |
N. I. Muskhelishvili, Singular Integral Equations. Boundary Problems of Function Theory and Their Application to Mathematical Physics, P. Noordhoff N. V., Groningen, 1953. |
[22] |
B. E. Petersen, Introduction to the Fourier Transform & Pseudodifferential Operators, Pitman (Advanced Publishing Program), Boston, MA, 1983. |
[23] |
W. Rudin, Real and Complex Analysis, 3$^{nd}$ edition, McGraw-Hill Book Co., New York, 1987. |
[24] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[25] |
I. Tikhonov and Y. S. Éidel'man,
Inverse scattering transform for differential equations in Banach space and the distribution of zeros of an entire Mittag-Leffler type function, Differ. Uravn., 38 (2002), 637-644.
|
[26] |
S. Yang, H. Chen, V. J. Ervin and H. Wang, Solvability and approximation of two-side conservative fractional diffusion problems with variable-coefficient based on least-squares, Appl. Math. Comput., 406 (2021), 21 pp.
doi: 10.1016/j.amc.2021.126229. |
[27] |
X. Zheng, V. J. Ervin and H. Wang,
Wellposedness of the two-sided variable coefficient Caputo flux fractional diffusion equation and error estimate of its spectral approximation, Appl. Numer. Math., 153 (2020), 234-247.
doi: 10.1016/j.apnum.2020.02.019. |
[28] |
X. Zheng, V. J. Ervin and H. Wang,
Numerical approximations for the variable coefficient fractional diffusion equations with non-smooth data, Comput. Methods Appl. Math., 20 (2020), 573-589.
doi: 10.1515/cmam-2019-0038. |
[29] |
X. Zheng, V. J. Ervin and H. Wang, Optimal Petrov-Galerkin spectral approximation method for the fractional diffusion, advection, reaction equation on a bounded interval, J. Sci. Comput., 86 (2021), 22 pp.
doi: 10.1007/s10915-020-01366-y. |

[1] |
Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 995-1006. doi: 10.3934/dcdss.2020058 |
[2] |
Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 609-627. doi: 10.3934/dcdss.2020033 |
[3] |
Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 867-880. doi: 10.3934/dcdss.2020050 |
[4] |
Ricardo Almeida, M. Luísa Morgado. Optimality conditions involving the Mittag–Leffler tempered fractional derivative. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 519-534. doi: 10.3934/dcdss.2021149 |
[5] |
Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 519-537. doi: 10.3934/dcdss.2020029 |
[6] |
Raziye Mert, Thabet Abdeljawad, Allan Peterson. A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2417-2434. doi: 10.3934/dcdss.2020171 |
[7] |
Behzad Ghanbari, Devendra Kumar, Jagdev Singh. An efficient numerical method for fractional model of allelopathic stimulatory phytoplankton species with Mittag-Leffler law. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3577-3587. doi: 10.3934/dcdss.2020428 |
[8] |
Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 561-574. doi: 10.3934/dcdss.2020031 |
[9] |
Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267 |
[10] |
Tomasz Komorowski, Adam Bobrowski. A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3495-3502. doi: 10.3934/dcdss.2020248 |
[11] |
Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063 |
[12] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[13] |
Doyoon Kim, Seungjin Ryu. The weak maximum principle for second-order elliptic and parabolic conormal derivative problems. Communications on Pure and Applied Analysis, 2020, 19 (1) : 493-510. doi: 10.3934/cpaa.2020024 |
[14] |
Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 |
[15] |
Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571 |
[16] |
Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure and Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335 |
[17] |
Chiu-Yen Kao, Yuan Lou, Eiji Yanagida. Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences & Engineering, 2008, 5 (2) : 315-335. doi: 10.3934/mbe.2008.5.315 |
[18] |
Pablo Blanc. A lower bound for the principal eigenvalue of fully nonlinear elliptic operators. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3613-3623. doi: 10.3934/cpaa.2020158 |
[19] |
Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034 |
[20] |
Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control and Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]