-
Previous Article
Formation of singularities of solutions to the Cauchy problem for semilinear Moore-Gibson-Thompson equations
- CPAA Home
- This Issue
-
Next Article
On an exponentially decaying diffusive chemotaxis system with indirect signals
Symmetry and monotonicity of positive solutions for a class of general pseudo-relativistic systems
School of Mathematics, Harbin Institute of Technology, Harbin 150001, China |
$ \begin{equation*} \begin{cases} \begin{aligned} &(-\Delta+m^2)^su(x) = f(u(x), v(x)), \\ &(-\Delta+m^2)^tv(x) = g(u(x), v(x)), \end{aligned} \end{cases} \end{equation*} $ |
$ m \in (0, +\infty) $ |
$ s, t \in (0,1) $ |
References:
[1] |
V. Ambrosio, Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator, J. Math. Phys., 57 (2016), 051502, 18 pp.
doi: 10.1063/1.4949352. |
[2] |
H. Berestycki and L. Nirenberg,
Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237-275.
doi: 10.1016/0393-0440(88)90006-X. |
[3] |
J. Busca and B. Sirakov,
Symmetry results for semilinear elliptic systems in the whole space, J. Differ. Equ., 163 (2000), 41-56.
doi: 10.1006/jdeq.1999.3701. |
[4] |
H. Bueno, AHS. Medeiros and GA. Pereira, Pohozaev-type identities for a pseudo-relativistic Schrödinger operator and applications, arXiv: 1810.07597. |
[5] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[6] |
R. Carmona, W. Masters and B. Simon,
Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions, J. Funct. Anal., 91 (1990), 117-142.
doi: 10.1016/0022-1236(90)90049-Q. |
[7] |
W. Chen and C. Li,
Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.
doi: 10.1016/j.aim.2018.07.016. |
[8] |
W. Chen, C. Li and Y. Li,
A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038. |
[9] |
W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differ. Equ., 56 (2017), 18 pp.
doi: 10.1007/s00526-017-1110-3. |
[10] |
W. Chen, C. Li and B. Ou,
Classification of solutions for a system of integral equations, Commun. Partial Differ. Equ., 30 (2005), 59-65.
|
[11] |
W. Chen, C. Li and B. Ou,
Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.
doi: 10.3934/dcds.2005.12.347. |
[12] |
W. Choi, Y. Hong and J. Seok,
Semilinear elliptic equations with the pseudo-relativistic operator on a bounded domain, Nonlinear Anal., 173 (2018), 123-145.
doi: 10.1016/j.na.2018.03.020. |
[13] |
W. Dai, G. Qin and D. Wu,
Direct methods for pseudo-relativistic Schrödinger operators, J. Geom. Anal., 31 (2021), 5555-5618.
doi: 10.1007/s12220-020-00492-1. |
[14] |
S. Dipierro, N. Soave and E. Valdinoci,
On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results, Math. Ann., 369 (2017), 1283-1326.
doi: 10.1007/s00208-016-1487-x. |
[15] |
A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher Transcendental Functions, McGraw-Hill, New York, 1953. |
[16] |
M. Fall and V. Felli,
Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst., 35 (2015), 5827-5867.
doi: 10.3934/dcds.2015.35.5827. |
[17] |
B. Gidas, W. Ni and L. Nirenberg,
Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209-243.
|
[18] |
Y. Guo and S. Peng,
Symmetry and monotonicity of nonnegative solutions to pseudo-relativistic Choquard equations, Z. Angew. Math. Phys., 72 (2021), 1-20.
doi: 10.1007/s00033-021-01551-5. |
[19] |
Y. Guo and S. Peng,
Liouville-type results for positive solutions of pseudo-relativistic Schrödinger system, P. Roy. Soc. Edinb. A, (2021), 1-33.
|
[20] |
Y. Li and P. Ma,
Symmetry of solutions for a fractional system, Sci. China Math., 60 (2017), 1805-1824.
doi: 10.1007/s11425-016-0231-x. |
[21] |
B. Liu and L. Ma,
Radial symmetry results for fractional Laplacian systems, Nonlinear Anal., 146 (2016), 120-135.
doi: 10.1016/j.na.2016.08.022. |
[22] |
M. Ryznar,
Estimate of Green function for relativistic $\alpha$-stable processes, Potential Anal., 17 (2002), 1-23.
doi: 10.1023/A:1015231913916. |
[23] |
P. Wang and Y. Wang,
Positive solutions for a weighted fractional system, Acta Math. Sci., 38 (2018), 935-949.
doi: 10.1016/S0252-9602(18)30794-X. |
show all references
References:
[1] |
V. Ambrosio, Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator, J. Math. Phys., 57 (2016), 051502, 18 pp.
doi: 10.1063/1.4949352. |
[2] |
H. Berestycki and L. Nirenberg,
Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237-275.
doi: 10.1016/0393-0440(88)90006-X. |
[3] |
J. Busca and B. Sirakov,
Symmetry results for semilinear elliptic systems in the whole space, J. Differ. Equ., 163 (2000), 41-56.
doi: 10.1006/jdeq.1999.3701. |
[4] |
H. Bueno, AHS. Medeiros and GA. Pereira, Pohozaev-type identities for a pseudo-relativistic Schrödinger operator and applications, arXiv: 1810.07597. |
[5] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[6] |
R. Carmona, W. Masters and B. Simon,
Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions, J. Funct. Anal., 91 (1990), 117-142.
doi: 10.1016/0022-1236(90)90049-Q. |
[7] |
W. Chen and C. Li,
Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.
doi: 10.1016/j.aim.2018.07.016. |
[8] |
W. Chen, C. Li and Y. Li,
A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038. |
[9] |
W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differ. Equ., 56 (2017), 18 pp.
doi: 10.1007/s00526-017-1110-3. |
[10] |
W. Chen, C. Li and B. Ou,
Classification of solutions for a system of integral equations, Commun. Partial Differ. Equ., 30 (2005), 59-65.
|
[11] |
W. Chen, C. Li and B. Ou,
Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.
doi: 10.3934/dcds.2005.12.347. |
[12] |
W. Choi, Y. Hong and J. Seok,
Semilinear elliptic equations with the pseudo-relativistic operator on a bounded domain, Nonlinear Anal., 173 (2018), 123-145.
doi: 10.1016/j.na.2018.03.020. |
[13] |
W. Dai, G. Qin and D. Wu,
Direct methods for pseudo-relativistic Schrödinger operators, J. Geom. Anal., 31 (2021), 5555-5618.
doi: 10.1007/s12220-020-00492-1. |
[14] |
S. Dipierro, N. Soave and E. Valdinoci,
On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results, Math. Ann., 369 (2017), 1283-1326.
doi: 10.1007/s00208-016-1487-x. |
[15] |
A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher Transcendental Functions, McGraw-Hill, New York, 1953. |
[16] |
M. Fall and V. Felli,
Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst., 35 (2015), 5827-5867.
doi: 10.3934/dcds.2015.35.5827. |
[17] |
B. Gidas, W. Ni and L. Nirenberg,
Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209-243.
|
[18] |
Y. Guo and S. Peng,
Symmetry and monotonicity of nonnegative solutions to pseudo-relativistic Choquard equations, Z. Angew. Math. Phys., 72 (2021), 1-20.
doi: 10.1007/s00033-021-01551-5. |
[19] |
Y. Guo and S. Peng,
Liouville-type results for positive solutions of pseudo-relativistic Schrödinger system, P. Roy. Soc. Edinb. A, (2021), 1-33.
|
[20] |
Y. Li and P. Ma,
Symmetry of solutions for a fractional system, Sci. China Math., 60 (2017), 1805-1824.
doi: 10.1007/s11425-016-0231-x. |
[21] |
B. Liu and L. Ma,
Radial symmetry results for fractional Laplacian systems, Nonlinear Anal., 146 (2016), 120-135.
doi: 10.1016/j.na.2016.08.022. |
[22] |
M. Ryznar,
Estimate of Green function for relativistic $\alpha$-stable processes, Potential Anal., 17 (2002), 1-23.
doi: 10.1023/A:1015231913916. |
[23] |
P. Wang and Y. Wang,
Positive solutions for a weighted fractional system, Acta Math. Sci., 38 (2018), 935-949.
doi: 10.1016/S0252-9602(18)30794-X. |
[1] |
Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235 |
[2] |
Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082 |
[3] |
Yuxia Guo, Shaolong Peng. Monotonicity and nonexistence of positive solutions for pseudo-relativistic equation with indefinite nonlinearity. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1637-1648. doi: 10.3934/cpaa.2022037 |
[4] |
Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015 |
[5] |
Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1871-1897. doi: 10.3934/dcdss.2020462 |
[6] |
Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925 |
[7] |
Younghun Hong, Sangdon Jin. Orbital stability for the mass-critical and supercritical pseudo-relativistic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3103-3118. doi: 10.3934/dcds.2022010 |
[8] |
Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051 |
[9] |
Ryan Hynd, Francis Seuffert. On the symmetry and monotonicity of Morrey extremals. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5285-5303. doi: 10.3934/cpaa.2020238 |
[10] |
Chris Johnson, Martin Schmoll. Pseudo-Anosov eigenfoliations on Panov planes. Electronic Research Announcements, 2014, 21: 89-108. doi: 10.3934/era.2014.21.89 |
[11] |
Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201 |
[12] |
Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154 |
[13] |
Meng Qu, Ping Li, Liu Yang. Symmetry and monotonicity of solutions for the fully nonlinear nonlocal equation. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1337-1349. doi: 10.3934/cpaa.2020065 |
[14] |
Guangyu Xu. Emergence of lager densities in chemotaxis system with indirect signal production and non-radial symmetry case. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022096 |
[15] |
Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic and Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043 |
[16] |
Yonggeun Cho, Tohru Ozawa. On radial solutions of semi-relativistic Hartree equations. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 71-82. doi: 10.3934/dcdss.2008.1.71 |
[17] |
Sanjay Dharmavaram, Timothy J. Healey. Direct construction of symmetry-breaking directions in bifurcation problems with spherical symmetry. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1669-1684. doi: 10.3934/dcdss.2019112 |
[18] |
Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795 |
[19] |
Orlando Lopes. Uniqueness and radial symmetry of minimizers for a nonlocal variational problem. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2265-2282. doi: 10.3934/cpaa.2019102 |
[20] |
Zhenjie Li, Chunqin Zhou. Radial symmetry of nonnegative solutions for nonlinear integral systems. Communications on Pure and Applied Analysis, 2022, 21 (3) : 837-844. doi: 10.3934/cpaa.2021201 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]