This paper is concerned with the study of multiple positive solutions to the following elliptic problem involving a nonhomogeneous operator with nonstandard growth of
$ \left\{ \begin{alignedat}{2} {} - \mathcal{L}_{p,q} u & {} = \lambda \frac{f(u)}{u^\gamma}, \ u>0 && \quad\mbox{ in } \, \Omega, \\ u & {} = 0 && \quad\mbox{ on } \partial\Omega, \end{alignedat} \right. $
where
$ \mathcal{L}_{p,q} u : = {\rm{div}}(|\nabla u|^{p-2} \nabla u + |\nabla u|^{q-2} \nabla u), $
Citation: |
[1] | H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM review, 18 (1976), 620-709. doi: 10.1137/1018114. |
[2] | R. Arora, J. Giacomoni and G. Warnault, Regularity results for a class of nonlinear fractional Laplacian and singular problems, Nonlinear Differ. Equ. Appl., 28 (2021), 35 pp. doi: 10.1007/s00030-021-00693-9. |
[3] | M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215 (2015), 443-496. doi: 10.1007/s00205-014-0785-2. |
[4] | M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Commun. Partial Differ. Equ., 2 (1977), 193-222. doi: 10.1080/03605307708820029. |
[5] | R. Dhanya, E. Ko and R. Shivaji, A three solution theorem for singular nonlinear elliptic boundary value problems, J. Math. Anal. Appl., 424 (2015), 598-612. doi: 10.1016/j.jmaa.2014.11.012. |
[6] | M. Ghergu and V. Rădulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford University Press, 2008. |
[7] | J. Giacomoni, D. Kumar and K. Sreenadh, Sobolev and Hölder regularity results for some singular nonhomogeneous quasilinear problems, Calc. Var. Partial Differ. Equ., 60 (2021), 33 pp. doi: 10.1007/s00526-021-01994-8. |
[8] | J. Giacomoni, T. Mukherjee and K. Sreenadh, Existence of three positive solutions for a nonlocal singular Dirichlet boundary problem, Adv. Nonlinear Stud., 19 (2019), 333-352. doi: 10.1515/ans-2018-0011. |
[9] | J. Giacomoni, I. Schindler and P. Taká$\breve{\rm{c}}$, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci., 6 (2007), 117-158. doi: 10.2422/2036-2145.2007.1.07. |
[10] | C. He and G. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing p & q-laplacians, Ann. Acad. Sci. Fenn. Math, 33 (2008), 337-371. |
[11] | E. Ko, K. L. Eun and R. Shivaji, Multiplicity results for classes of infinite positone problems, Z. Anal. Anwend., 30 (2011), 305-318. doi: 10.4171/ZAA/1436. |
[12] | D. Kumar, V. D. Rădulescu and K. Sreenadh, Singular elliptic problems with unbalanced growth and critical exponent, Nonlinearity, 33 (2020), 3336-3369. doi: 10.1088/1361-6544/ab81ed. |
[13] | A. Lê, On the local Hölder continuity of the inverse of the $p$-laplace operator, Proc. Amer. Math. Soc., 135 (2007), 3553-3560. doi: 10.1090/S0002-9939-07-08913-7. |
[14] | G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Urall'tseva for elliptic equations, Commun. Partial Differ. Equ., 16 (1991), 311-361. doi: 10.1080/03605309108820761. |
[15] | P. Marcellini, Regularity and existence of solutions of elliptic equations with $p$, $q$–growth conditions, J. Differ. Equ., 90 (1991), 1-30. doi: 10.1016/0022-0396(91)90158-6. |
[16] | N. S. Papageorgiou, V. D. Rădulescu and D. D. Repov$\breve{\rm{s}}$, Nonlinear nonhomogeneous singular problems, Calc. Var., 59 (2020), 1-31. doi: 10.1007/s00526-019-1667-0. |
[17] | P. Pucci and J. B. Serrin, The Maximum Principle, Springer Science and Business Media, 2007. doi: 10.1007/978-3-7643-8145-5. |
[18] | M. Ramaswamy and R. Shivaji, Multiple positive solutions for classes of p-laplacian equations, Differ. Int. Equ., 17 (2004), 1255-1261. |
[19] | R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear analysis and applications (Arlington, Tex., 1986), 561-566, Lecture Notes in Pure and Appl. Math., 109, Dekker, New York, 1987. |
[20] | V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 29 (1987), 33 pp. doi: 10.1070/im1987v029n01abeh000958. |