-
Previous Article
Wong-Zakai approximations and pathwise dynamics of stochastic fractional lattice systems
- CPAA Home
- This Issue
- Next Article
Multiple localized nodal solutions of high topological type for Kirchhoff-type equation with double potentials
Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China |
$ \begin{equation*} -(\varepsilon^{2}a+ \varepsilon b\int _{\mathbb{R}^{3}}|\nabla v|^{2}dx)\Delta v+V(x)v = P(x)f(v)\; \; {\rm{in}}\; \mathbb{R}^{3}, \end{equation*} $ |
$ \varepsilon $ |
$ a, b>0 $ |
$ V, P\in C^{1}(\mathbb{R}^{3}, \mathbb{R}) $ |
$ P $ |
References:
[1] |
T. Bartsch and Z. Q. Wang,
Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Commun. Partial Differ. Equ., 20 (1995), 1725-1741.
doi: 10.1080/03605309508821149. |
[2] |
J. Byeon and Z. Q. Wang,
Standing waves with a critical frequency for nonlinear Schrödinger equations, Ⅱ, Calc. Var. Partial Differ. Equ., 18 (2003), 207-219.
doi: 10.1007/s00526-002-0191-8. |
[3] |
D. Cassani, Z. Liu, C. Tarsi and J. J. Zhang,
Multiplicity of sign-changing solutions for Kirchhoff-type equations, Nonlinear Anal., 186 (2019), 145-161.
doi: 10.1016/j.na.2019.01.025. |
[4] |
S. Chen, J. Q. Liu and Z. Q. Wang,
Localized nodal solutions for a critical nonlinear Schrödinger equation, J. Funct. Anal., 277 (2019), 594-640.
doi: 10.1016/j.jfa.2018.10.027. |
[5] |
S. Chen and Z. Q. Wang,
Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 56 (2017), 1-26.
doi: 10.1007/s00526-016-1094-4. |
[6] |
T. D'Aprile and A. Pistoia,
Existence multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1423-1451.
doi: 10.1016/j.anihpc.2009.01.002. |
[7] |
Y. B. Deng, S. J. Peng and W. Shuai,
Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^{3}$, J. Funct. Anal., 269 (2015), 3500-3527.
doi: 10.1016/j.jfa.2015.09.012. |
[8] |
A. Floer and A. Weinstein,
Nonspreading wave pachets for the packets for the cubic Schrödinger with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.
doi: 10.1016/0022-1236(86)90096-0. |
[9] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[10] |
X. M. He and W. M. Zou,
Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^{3}$, J. Differ. Equ., 252 (2012), 1813-1834.
doi: 10.1016/j.jde.2011.08.035. |
[11] |
Y. He and G. B. Li,
Standing waves for a class of Kirchhoff type problems in $\mathbb{R}^{3}$ involving critical Sobolev exponents, Calc. Var. Partial Differ. Equ., 54 (2015), 3067-3106.
doi: 10.1007/s00526-015-0894-2. |
[12] |
X. Kang and J. Wei,
On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differ. Equ., 5 (2000), 899-928.
|
[13] | |
[14] |
G. B. Li, P. Luo, S. J. Peng, C. H. Wang and C. L. Xiang,
A singularly perturbed Kirchhoff problem revisited, J. Differ. Equ., 268 (2020), 541-589.
doi: 10.1016/j.jde.2019.08.016. |
[15] |
G. B. Li and H. Y. Ye,
Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3}$, J. Differ. Equ., 257 (2014), 566-600.
doi: 10.1016/j.jde.2014.04.011. |
[16] |
Y. H. Li, F. Y. Li and J. P. Shi,
Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differ. Equ., 253 (2012), 2285-2294.
doi: 10.1016/j.jde.2012.05.017. |
[17] |
J. L. Lions,
On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284-346.
|
[18] |
J. Q. Liu, X. Liu and Z. Q. Wang,
Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calc. Var. Partial Differ. Equ., 52 (2015), 565-586.
doi: 10.1007/s00526-014-0724-y. |
[19] |
J. Q. Liu, X. Liu and Z. Q. Wang,
Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth, J. Differ. Equ., 261 (2016), 7194-7236.
doi: 10.1016/j.jde.2016.09.018. |
[20] |
X. Liu, J. Q. Liu and Z. Q. Wang,
Localized nodal solutions for quasilinear Schrödinger equations, J. Differ. Equ., 267 (2019), 7411-7461.
doi: 10.1016/j.jde.2019.08.003. |
[21] |
Z. Liu, Y. Lou and J. J. Zhang, A perturbation approach to studying sign-changing solutions of Kirchhoff equations with a general nonlinearity, arXiv: 1812.09240v2. |
[22] |
D. Oplinger,
Frequency response of a nonlinear stretched string, J. Acoust. Soc. Amer., 32 (1960), 1529-1538.
doi: 10.1121/1.1907948. |
[23] |
K. Perera and Z. T. Zhang,
Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ., 221 (2006), 246-255.
doi: 10.1016/j.jde.2005.03.006. |
[24] |
M. Del Pino and P. Felmer,
Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 4 (1996), 121-137.
doi: 10.1007/BF01189950. |
[25] |
P. H. Rabinowitz,
On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.
doi: 10.1007/BF00946631. |
[26] |
W. Shuai,
Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differ. Equ., 259 (2015), 1256-1274.
doi: 10.1016/j.jde.2015.02.040. |
[27] |
J. Sun, L. Li, M. Cencelj and B. Gabrovšek,
Infinitely many sign-changing solutions for Kirchhoff type problems in $\mathbb{R}^{3}$, Nonlinear Anal., 186 (2019), 33-54.
doi: 10.1016/j.na.2018.10.007. |
[28] |
X. H. Tang and B. Cheng,
Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differ. Equ., 261 (2016), 2384-2402.
doi: 10.1016/j.jde.2016.04.032. |
[29] |
K. Tintarev and K. H. Fieseler, Concentration Compactness Functional-Analytic Grounds and Applications, Imperial College Press, London, 2007.
doi: 10.1142/p456.![]() ![]() ![]() |
[30] |
J. Wang, L. X. Tian, J. X. Xu and F. B. Zhang,
Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253 (2012), 2314-2351.
doi: 10.1016/j.jde.2012.05.023. |
[31] |
X. Wang,
On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys., 153 (1993), 229-244.
|
[32] |
L. Wang, B. L. Zhang and K. Cheng,
Ground state sign-changing solutions for the Schrödinger-Kirchhoff equation in $\mathbb{R}^{3}$, J. Math. Anal. Appl., 466 (2018), 1545-1569.
doi: 10.1016/j.jmaa.2018.06.071. |
[33] |
Q. L. Xie, S. W. Ma and X. Zhang,
Bound state solutions of Kirchhoff type problems with critical exponent, J. Differ. Equ., 261 (2016), 890-924.
doi: 10.1016/j.jde.2016.03.028. |
[34] |
Q. L. Xie and X. Zhang,
Semi-classical solutions for Kirchhoff type problem with a critical frequency, Proc. Roy. Soc. Edinb., 151 (2021), 761-798.
doi: 10.1017/prm.2020.37. |
[35] |
Y. Yu and Y. H. Ding, An infinite sequence of localized nodal solutions for Schrödinger-Poisson system with double potentials, arXiv: 2007.14599v1. |
show all references
References:
[1] |
T. Bartsch and Z. Q. Wang,
Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Commun. Partial Differ. Equ., 20 (1995), 1725-1741.
doi: 10.1080/03605309508821149. |
[2] |
J. Byeon and Z. Q. Wang,
Standing waves with a critical frequency for nonlinear Schrödinger equations, Ⅱ, Calc. Var. Partial Differ. Equ., 18 (2003), 207-219.
doi: 10.1007/s00526-002-0191-8. |
[3] |
D. Cassani, Z. Liu, C. Tarsi and J. J. Zhang,
Multiplicity of sign-changing solutions for Kirchhoff-type equations, Nonlinear Anal., 186 (2019), 145-161.
doi: 10.1016/j.na.2019.01.025. |
[4] |
S. Chen, J. Q. Liu and Z. Q. Wang,
Localized nodal solutions for a critical nonlinear Schrödinger equation, J. Funct. Anal., 277 (2019), 594-640.
doi: 10.1016/j.jfa.2018.10.027. |
[5] |
S. Chen and Z. Q. Wang,
Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations, Calc. Var. Partial Differ. Equ., 56 (2017), 1-26.
doi: 10.1007/s00526-016-1094-4. |
[6] |
T. D'Aprile and A. Pistoia,
Existence multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1423-1451.
doi: 10.1016/j.anihpc.2009.01.002. |
[7] |
Y. B. Deng, S. J. Peng and W. Shuai,
Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^{3}$, J. Funct. Anal., 269 (2015), 3500-3527.
doi: 10.1016/j.jfa.2015.09.012. |
[8] |
A. Floer and A. Weinstein,
Nonspreading wave pachets for the packets for the cubic Schrödinger with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.
doi: 10.1016/0022-1236(86)90096-0. |
[9] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[10] |
X. M. He and W. M. Zou,
Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^{3}$, J. Differ. Equ., 252 (2012), 1813-1834.
doi: 10.1016/j.jde.2011.08.035. |
[11] |
Y. He and G. B. Li,
Standing waves for a class of Kirchhoff type problems in $\mathbb{R}^{3}$ involving critical Sobolev exponents, Calc. Var. Partial Differ. Equ., 54 (2015), 3067-3106.
doi: 10.1007/s00526-015-0894-2. |
[12] |
X. Kang and J. Wei,
On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differ. Equ., 5 (2000), 899-928.
|
[13] | |
[14] |
G. B. Li, P. Luo, S. J. Peng, C. H. Wang and C. L. Xiang,
A singularly perturbed Kirchhoff problem revisited, J. Differ. Equ., 268 (2020), 541-589.
doi: 10.1016/j.jde.2019.08.016. |
[15] |
G. B. Li and H. Y. Ye,
Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3}$, J. Differ. Equ., 257 (2014), 566-600.
doi: 10.1016/j.jde.2014.04.011. |
[16] |
Y. H. Li, F. Y. Li and J. P. Shi,
Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differ. Equ., 253 (2012), 2285-2294.
doi: 10.1016/j.jde.2012.05.017. |
[17] |
J. L. Lions,
On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284-346.
|
[18] |
J. Q. Liu, X. Liu and Z. Q. Wang,
Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calc. Var. Partial Differ. Equ., 52 (2015), 565-586.
doi: 10.1007/s00526-014-0724-y. |
[19] |
J. Q. Liu, X. Liu and Z. Q. Wang,
Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth, J. Differ. Equ., 261 (2016), 7194-7236.
doi: 10.1016/j.jde.2016.09.018. |
[20] |
X. Liu, J. Q. Liu and Z. Q. Wang,
Localized nodal solutions for quasilinear Schrödinger equations, J. Differ. Equ., 267 (2019), 7411-7461.
doi: 10.1016/j.jde.2019.08.003. |
[21] |
Z. Liu, Y. Lou and J. J. Zhang, A perturbation approach to studying sign-changing solutions of Kirchhoff equations with a general nonlinearity, arXiv: 1812.09240v2. |
[22] |
D. Oplinger,
Frequency response of a nonlinear stretched string, J. Acoust. Soc. Amer., 32 (1960), 1529-1538.
doi: 10.1121/1.1907948. |
[23] |
K. Perera and Z. T. Zhang,
Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ., 221 (2006), 246-255.
doi: 10.1016/j.jde.2005.03.006. |
[24] |
M. Del Pino and P. Felmer,
Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ., 4 (1996), 121-137.
doi: 10.1007/BF01189950. |
[25] |
P. H. Rabinowitz,
On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.
doi: 10.1007/BF00946631. |
[26] |
W. Shuai,
Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differ. Equ., 259 (2015), 1256-1274.
doi: 10.1016/j.jde.2015.02.040. |
[27] |
J. Sun, L. Li, M. Cencelj and B. Gabrovšek,
Infinitely many sign-changing solutions for Kirchhoff type problems in $\mathbb{R}^{3}$, Nonlinear Anal., 186 (2019), 33-54.
doi: 10.1016/j.na.2018.10.007. |
[28] |
X. H. Tang and B. Cheng,
Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differ. Equ., 261 (2016), 2384-2402.
doi: 10.1016/j.jde.2016.04.032. |
[29] |
K. Tintarev and K. H. Fieseler, Concentration Compactness Functional-Analytic Grounds and Applications, Imperial College Press, London, 2007.
doi: 10.1142/p456.![]() ![]() ![]() |
[30] |
J. Wang, L. X. Tian, J. X. Xu and F. B. Zhang,
Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253 (2012), 2314-2351.
doi: 10.1016/j.jde.2012.05.023. |
[31] |
X. Wang,
On concentration of positive bound states of nonlinear Schrödinger equations, Commun. Math. Phys., 153 (1993), 229-244.
|
[32] |
L. Wang, B. L. Zhang and K. Cheng,
Ground state sign-changing solutions for the Schrödinger-Kirchhoff equation in $\mathbb{R}^{3}$, J. Math. Anal. Appl., 466 (2018), 1545-1569.
doi: 10.1016/j.jmaa.2018.06.071. |
[33] |
Q. L. Xie, S. W. Ma and X. Zhang,
Bound state solutions of Kirchhoff type problems with critical exponent, J. Differ. Equ., 261 (2016), 890-924.
doi: 10.1016/j.jde.2016.03.028. |
[34] |
Q. L. Xie and X. Zhang,
Semi-classical solutions for Kirchhoff type problem with a critical frequency, Proc. Roy. Soc. Edinb., 151 (2021), 761-798.
doi: 10.1017/prm.2020.37. |
[35] |
Y. Yu and Y. H. Ding, An infinite sequence of localized nodal solutions for Schrödinger-Poisson system with double potentials, arXiv: 2007.14599v1. |
[1] |
He Zhang, Haibo Chen. The effect of the weight function on the number of nodal solutions of the Kirchhoff-type equations in high dimensions. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2701-2721. doi: 10.3934/cpaa.2022069 |
[2] |
Die Hu, Xianhua Tang, Qi Zhang. Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type. Communications on Pure and Applied Analysis, 2022, 21 (3) : 1071-1091. doi: 10.3934/cpaa.2022010 |
[3] |
Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124 |
[4] |
To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694 |
[5] |
Zhiqing Liu, Zhong Bo Fang. Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term. Communications on Pure and Applied Analysis, 2020, 19 (2) : 941-966. doi: 10.3934/cpaa.2020043 |
[6] |
Xiao-Jing Zhong, Chun-Lei Tang. The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem. Communications on Pure and Applied Analysis, 2017, 16 (2) : 611-628. doi: 10.3934/cpaa.2017030 |
[7] |
Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure and Applied Analysis, 2021, 20 (2) : 737-754. doi: 10.3934/cpaa.2020287 |
[8] |
Wen Zhang, Xianhua Tang, Bitao Cheng, Jian Zhang. Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2161-2177. doi: 10.3934/cpaa.2016032 |
[9] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091 |
[10] |
Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1927-1954. doi: 10.3934/dcdsb.2021115 |
[11] |
Nemat Nyamoradi, Kaimin Teng. Existence of solutions for a Kirchhoff-type-nonlocal operators of elliptic type. Communications on Pure and Applied Analysis, 2015, 14 (2) : 361-371. doi: 10.3934/cpaa.2015.14.361 |
[12] |
Yinbin Deng, Wei Shuai. Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3139-3168. doi: 10.3934/dcds.2018137 |
[13] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Kirchhoff equation with pure critical growth nonlinearity. Electronic Research Archive, 2021, 29 (5) : 3281-3295. doi: 10.3934/era.2021038 |
[14] |
Jiu Liu, Jia-Feng Liao, Chun-Lei Tang. Positive solution for the Kirchhoff-type equations involving general subcritical growth. Communications on Pure and Applied Analysis, 2016, 15 (2) : 445-455. doi: 10.3934/cpaa.2016.15.445 |
[15] |
Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089 |
[16] |
Haixia Li. Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity. Evolution Equations and Control Theory, 2021, 10 (4) : 723-732. doi: 10.3934/eect.2020088 |
[17] |
Sami Aouaoui. A multiplicity result for some Kirchhoff-type equations involving exponential growth condition in $\mathbb{R}^2 $. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1351-1370. doi: 10.3934/cpaa.2016.15.1351 |
[18] |
Mingqi Xiang, Binlin Zhang, Die Hu. Kirchhoff-type differential inclusion problems involving the fractional Laplacian and strong damping. Electronic Research Archive, 2020, 28 (2) : 651-669. doi: 10.3934/era.2020034 |
[19] |
Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263 |
[20] |
Minbo Yang, Yanheng Ding. Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure and Applied Analysis, 2013, 12 (1) : 429-449. doi: 10.3934/cpaa.2013.12.429 |
2021 Impact Factor: 1.273
Tools
Article outline
[Back to Top]