
-
Previous Article
Parabolic Systems with measurable coefficients in weighted Sobolev spaces
- CPAA Home
- This Issue
-
Next Article
Wong-Zakai approximations and pathwise dynamics of stochastic fractional lattice systems
Singular quasilinear critical Schrödinger equations in $ \mathbb {R}^N $
1. | Department of Mathematics – University of Firenze, Viale Morgagni 40-44 – 50134 Firenze, Italy |
2. | Department of Mathematics – University of Perugia, Via Vanvitelli 1 – 06123 Perugia, Italy |
We prove multiplicity results for solutions, both with positive and negative energy, for a class of singular quasilinear Schrödinger equations in the entire $ \mathbb {R}^N $ involving a critical term, nontrivial weights and positive parameters $ \lambda $, $ \beta $, covering several physical models, coming from plasma physics as well as high-power ultra short laser in matter. Also the symmetric setting is investigated. Our proofs relay on variational tools, including concentration compactness principles because of the delicate situation of the double lack of compactness. In addition, a necessary reformulation of the original problem in a suitable variational setting, produces a singular function, delicate to be managed.
References:
[1] |
S. Adachi, M. Shibata and T. Watanabe,
Blow-up phenomena and asymptotic profiles of ground states of quasilinear elliptic equations with $H^1$-supercritical nonlinearities, J. Differ. Equ., 256 (2014), 1492-1514.
doi: 10.1016/j.jde.2013.11.004. |
[2] |
S. Adachi and T. Watanabe,
$G$-invariant positive solutions for a quasilinear Schrödinger equation, Adv. Differ. Equ., 16 (2011), 289-324.
|
[3] |
C. O. Alves, G. M. Figueiredo and U. B. Severo,
Multiplicity of positive solutions for a class of quasilinear problems, Adv. Differ. Equ., 14 (2009), 911-942.
|
[4] |
L. Baldelli, Y. Brizi and R. Filippucci, Multiplicity results for $(p, q)$-Laplacian equations with critical exponent in $\mathbb {R}^N$ and negative energy, Calc. Var. Partial Differ. Equ., 60 (2021), 30 pp.
doi: 10.1007/s00526-020-01867-6. |
[5] |
L. Baldelli, Y. Brizi and R. Filippucci, On symmetric solutions for ($p, q$)-Laplacian equations in $\mathbb {R}^N$ with critical terms, J. Geom. Anal., 32 (2022), 25 pp.
doi: 10.1007/s12220-021-00846-3. |
[6] |
A.K. Ben-Naoum, C. Troestler and M. Willem,
Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Anal., 26 (1996), 823-833.
doi: 10.1016/0362-546X(94)00324-B. |
[7] |
H. Brezis and E. Lieb,
A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
doi: 10.2307/2044999. |
[8] |
J. Chabrowski,
Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var. Partial Differ. Equ., 3 (1995), 493-512.
doi: 10.1007/BF01187898. |
[9] |
M. Colin and L. Jeanjean,
Solutions for a quasilinear Schrödinger equations: a dual approach, Nonlinear Anal., 56 (2004), 213-226.
doi: 10.1016/j.na.2003.09.008. |
[10] |
Y. B. Deng, S. J. Peng and S. S. Yan,
Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differ. Equ., 260 (2016), 1228-1262.
doi: 10.1016/j.jde.2015.09.021. |
[11] |
R. Filippucci, P. Pucci and F. Robert,
On a $p$-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl., 91 (2009), 156-177.
doi: 10.1016/j.matpur.2008.09.008. |
[12] |
J. Garcia Azorero and I. Peral Alonso,
Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323 (1991), 877-895.
doi: 10.2307/2001562. |
[13] |
M. Ghergu and G. Singh,
On a class of mixed Choquard-Schrödinger-Poisson system, Discrete Contin. Dyn. Syst. S, 12 (2019), 297-309.
doi: 10.3934/dcdss.2019021. |
[14] |
Y. He, X. Luo and V. D. Rădulescu, Nodal multi-peak standing waves of fourth-order Schrödinger equations with mixed dispersion, J. Geom. Anal., 32 (2022), 36 pp.
doi: 10.1007/s12220-021-00795-x. |
[15] |
M. Ishiwata and M. $\hat{O}$tani,
Concentration compactness principle at infinity with partial symmetry and its application, Nonlinear Anal., 51 (2002), 391-407.
doi: 10.1016/S0362-546X(01)00836-7. |
[16] |
L. Jeanjean and K. Tanaka,
A positive solution for a nonlinear Schrödinger equation on $\mathbb {R}^N$, Indiana Univ. Math. J., 54 (2005), 443-464.
doi: 10.1512/iumj.2005.54.2502. |
[17] |
M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, A Pergamon Press Book, The Macmillan Co., New York, 1964. |
[18] |
Z. Li and Y. Wang,
Solutions to singular quasilinear elliptic equations on bounded domains, Electron. J. Differ. Equ., 2018 (2018), 1-12.
|
[19] |
P. L. Lions,
The concentration-compacteness principle in the calculus of variations. The locally compact case. Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.
|
[20] |
P. L. Lions,
The concentration-compacteness principle in the calculus of variations. The limit case. Ⅰ, Rev. Mat. Iberoam., 1 (1985), 145-201.
doi: 10.4171/RMI/6. |
[21] |
J. Q. Liu, Y. Q. Wang and Z. Q. Wang,
Soliton solutions for quasilinear Schrödinger equations Ⅱ, J. Differ. Equ., 187 (2003), 473-493.
doi: 10.1016/S0022-0396(02)00064-5. |
[22] |
R. S. Palais,
The principle of symmetric criticality, Commun. Math. Phys., 69 (1979), 19-30.
|
[23] |
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovs, Nonlinear Analysis-Theory and Methods, Springer Monographs in Mathematics, Springer, Cham, 2019.
doi: 10.1007/978-3-030-03430-6. |
[24] |
U. Severo,
Existence of weak solutions for quasilinear elliptic equations involving the $p$-laplacian, Electron. J. Differ. Equ., 2008 (2008), 1-16.
|
[25] |
Y. T. Shen and Y. J. Wang,
A class of generalized quasilinear Schrödinger equations, Commun. Pure Appl. Anal., 15 (2016), 853-870.
doi: 10.3934/cpaa.2016.15.853. |
[26] |
A. Elves, de B. Silva and Gilberto F. Vieira,
Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. and Partial Differ. Equ., 39 (2010), 1-33.
doi: 10.1007/s00526-009-0299-1. |
[27] |
Y. Wang,
Multiplicity of solutions for singular quasilinear Schrödinger equations with critical exponents, J. Math. Anal. Appl., 458 (2018), 1027-1043.
doi: 10.1016/j.jmaa.2017.10.015. |
[28] |
Y. Wang, Z. Li and A. A. Abdelgadir,
On singular quasilinear Schrödinger equations with critical exponents, Math. Methods Appl. Sci., 40 (2017), 5095-5108.
doi: 10.1002/mma.4373. |
[29] |
Y. Wang, Y. Zhang and Y. Shen,
Multiple solutions for quasilinear Schrödinger equations involving critical exponent, Appl. Math. Comput., 216 (2010), 849-856.
doi: 10.1016/j.amc.2010.01.091. |
[30] |
Y. J. Wang and W. M. Zou,
Bound states to critical quasilinear Schrödinger equations, Nonlinear Differ. Equ. Appl., 19 (2012), 19-47.
doi: 10.1007/s00030-011-0116-3. |
[31] |
L. Wen, S. Chen and V. D. Rădulescu, Axially symmetric solutions of the Schrödinger-Poisson system with zero mass potential in $\mathbb {R}^2$, Appl. Math. Lett., 104 (2020), 7 pp.
doi: 10.1016/j.aml.2020.106244. |
[32] |
M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[33] |
J. Yang, Y. J. Wang and A. A. Abdelgadir,
Soliton solutions for quasilinear Schrödinger equations, J. Math. Phys., 54 (2013), 1-19.
doi: 10.1063/1.4811394. |
show all references
References:
[1] |
S. Adachi, M. Shibata and T. Watanabe,
Blow-up phenomena and asymptotic profiles of ground states of quasilinear elliptic equations with $H^1$-supercritical nonlinearities, J. Differ. Equ., 256 (2014), 1492-1514.
doi: 10.1016/j.jde.2013.11.004. |
[2] |
S. Adachi and T. Watanabe,
$G$-invariant positive solutions for a quasilinear Schrödinger equation, Adv. Differ. Equ., 16 (2011), 289-324.
|
[3] |
C. O. Alves, G. M. Figueiredo and U. B. Severo,
Multiplicity of positive solutions for a class of quasilinear problems, Adv. Differ. Equ., 14 (2009), 911-942.
|
[4] |
L. Baldelli, Y. Brizi and R. Filippucci, Multiplicity results for $(p, q)$-Laplacian equations with critical exponent in $\mathbb {R}^N$ and negative energy, Calc. Var. Partial Differ. Equ., 60 (2021), 30 pp.
doi: 10.1007/s00526-020-01867-6. |
[5] |
L. Baldelli, Y. Brizi and R. Filippucci, On symmetric solutions for ($p, q$)-Laplacian equations in $\mathbb {R}^N$ with critical terms, J. Geom. Anal., 32 (2022), 25 pp.
doi: 10.1007/s12220-021-00846-3. |
[6] |
A.K. Ben-Naoum, C. Troestler and M. Willem,
Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Anal., 26 (1996), 823-833.
doi: 10.1016/0362-546X(94)00324-B. |
[7] |
H. Brezis and E. Lieb,
A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
doi: 10.2307/2044999. |
[8] |
J. Chabrowski,
Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var. Partial Differ. Equ., 3 (1995), 493-512.
doi: 10.1007/BF01187898. |
[9] |
M. Colin and L. Jeanjean,
Solutions for a quasilinear Schrödinger equations: a dual approach, Nonlinear Anal., 56 (2004), 213-226.
doi: 10.1016/j.na.2003.09.008. |
[10] |
Y. B. Deng, S. J. Peng and S. S. Yan,
Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differ. Equ., 260 (2016), 1228-1262.
doi: 10.1016/j.jde.2015.09.021. |
[11] |
R. Filippucci, P. Pucci and F. Robert,
On a $p$-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl., 91 (2009), 156-177.
doi: 10.1016/j.matpur.2008.09.008. |
[12] |
J. Garcia Azorero and I. Peral Alonso,
Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323 (1991), 877-895.
doi: 10.2307/2001562. |
[13] |
M. Ghergu and G. Singh,
On a class of mixed Choquard-Schrödinger-Poisson system, Discrete Contin. Dyn. Syst. S, 12 (2019), 297-309.
doi: 10.3934/dcdss.2019021. |
[14] |
Y. He, X. Luo and V. D. Rădulescu, Nodal multi-peak standing waves of fourth-order Schrödinger equations with mixed dispersion, J. Geom. Anal., 32 (2022), 36 pp.
doi: 10.1007/s12220-021-00795-x. |
[15] |
M. Ishiwata and M. $\hat{O}$tani,
Concentration compactness principle at infinity with partial symmetry and its application, Nonlinear Anal., 51 (2002), 391-407.
doi: 10.1016/S0362-546X(01)00836-7. |
[16] |
L. Jeanjean and K. Tanaka,
A positive solution for a nonlinear Schrödinger equation on $\mathbb {R}^N$, Indiana Univ. Math. J., 54 (2005), 443-464.
doi: 10.1512/iumj.2005.54.2502. |
[17] |
M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, A Pergamon Press Book, The Macmillan Co., New York, 1964. |
[18] |
Z. Li and Y. Wang,
Solutions to singular quasilinear elliptic equations on bounded domains, Electron. J. Differ. Equ., 2018 (2018), 1-12.
|
[19] |
P. L. Lions,
The concentration-compacteness principle in the calculus of variations. The locally compact case. Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.
|
[20] |
P. L. Lions,
The concentration-compacteness principle in the calculus of variations. The limit case. Ⅰ, Rev. Mat. Iberoam., 1 (1985), 145-201.
doi: 10.4171/RMI/6. |
[21] |
J. Q. Liu, Y. Q. Wang and Z. Q. Wang,
Soliton solutions for quasilinear Schrödinger equations Ⅱ, J. Differ. Equ., 187 (2003), 473-493.
doi: 10.1016/S0022-0396(02)00064-5. |
[22] |
R. S. Palais,
The principle of symmetric criticality, Commun. Math. Phys., 69 (1979), 19-30.
|
[23] |
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovs, Nonlinear Analysis-Theory and Methods, Springer Monographs in Mathematics, Springer, Cham, 2019.
doi: 10.1007/978-3-030-03430-6. |
[24] |
U. Severo,
Existence of weak solutions for quasilinear elliptic equations involving the $p$-laplacian, Electron. J. Differ. Equ., 2008 (2008), 1-16.
|
[25] |
Y. T. Shen and Y. J. Wang,
A class of generalized quasilinear Schrödinger equations, Commun. Pure Appl. Anal., 15 (2016), 853-870.
doi: 10.3934/cpaa.2016.15.853. |
[26] |
A. Elves, de B. Silva and Gilberto F. Vieira,
Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. and Partial Differ. Equ., 39 (2010), 1-33.
doi: 10.1007/s00526-009-0299-1. |
[27] |
Y. Wang,
Multiplicity of solutions for singular quasilinear Schrödinger equations with critical exponents, J. Math. Anal. Appl., 458 (2018), 1027-1043.
doi: 10.1016/j.jmaa.2017.10.015. |
[28] |
Y. Wang, Z. Li and A. A. Abdelgadir,
On singular quasilinear Schrödinger equations with critical exponents, Math. Methods Appl. Sci., 40 (2017), 5095-5108.
doi: 10.1002/mma.4373. |
[29] |
Y. Wang, Y. Zhang and Y. Shen,
Multiple solutions for quasilinear Schrödinger equations involving critical exponent, Appl. Math. Comput., 216 (2010), 849-856.
doi: 10.1016/j.amc.2010.01.091. |
[30] |
Y. J. Wang and W. M. Zou,
Bound states to critical quasilinear Schrödinger equations, Nonlinear Differ. Equ. Appl., 19 (2012), 19-47.
doi: 10.1007/s00030-011-0116-3. |
[31] |
L. Wen, S. Chen and V. D. Rădulescu, Axially symmetric solutions of the Schrödinger-Poisson system with zero mass potential in $\mathbb {R}^2$, Appl. Math. Lett., 104 (2020), 7 pp.
doi: 10.1016/j.aml.2020.106244. |
[32] |
M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[33] |
J. Yang, Y. J. Wang and A. A. Abdelgadir,
Soliton solutions for quasilinear Schrödinger equations, J. Math. Phys., 54 (2013), 1-19.
doi: 10.1063/1.4811394. |
[1] |
Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107 |
[2] |
Vincenzo Ambrosio. The nonlinear fractional relativistic Schrödinger equation: Existence, multiplicity, decay and concentration results. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5659-5705. doi: 10.3934/dcds.2021092 |
[3] |
Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83 |
[4] |
Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120 |
[5] |
Yingying Xie, Jian Su, Liquan Mei. Blowup results and concentration in focusing Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 5001-5017. doi: 10.3934/dcds.2020209 |
[6] |
Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254 |
[7] |
Edcarlos D. Silva, Jefferson S. Silva. Multiplicity of solutions for critical quasilinear Schrödinger equations using a linking structure. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5441-5470. doi: 10.3934/dcds.2020234 |
[8] |
J. Giacomoni, K. Sreeandh. Multiplicity results for a singular and quazilinear equation. Conference Publications, 2007, 2007 (Special) : 429-435. doi: 10.3934/proc.2007.2007.429 |
[9] |
João Marcos do Ó, Abbas Moameni. Solutions for singular quasilinear Schrödinger equations with one parameter. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1011-1023. doi: 10.3934/cpaa.2010.9.1011 |
[10] |
Minbo Yang, Yanheng Ding. Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure and Applied Analysis, 2013, 12 (1) : 429-449. doi: 10.3934/cpaa.2013.12.429 |
[11] |
Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure and Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281 |
[12] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[13] |
Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004 |
[14] |
Die Hu, Xianhua Tang, Qi Zhang. Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type. Communications on Pure and Applied Analysis, 2022, 21 (3) : 1071-1091. doi: 10.3934/cpaa.2022010 |
[15] |
Teresa D'Aprile. Some existence and concentration results for nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2002, 1 (4) : 457-474. doi: 10.3934/cpaa.2002.1.457 |
[16] |
Mehdi Badra, Kaushik Bal, Jacques Giacomoni. Existence results to a quasilinear and singular parabolic equation. Conference Publications, 2011, 2011 (Special) : 117-125. doi: 10.3934/proc.2011.2011.117 |
[17] |
César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure and Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535 |
[18] |
Haidong Liu, Leiga Zhao. Existence results for quasilinear Schrödinger equations with a general nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3429-3444. doi: 10.3934/cpaa.2020059 |
[19] |
Weiming Liu, Chunhua Wang. Infinitely many solutions for a nonlinear Schrödinger equation with non-symmetric electromagnetic fields. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7081-7115. doi: 10.3934/dcds.2016109 |
[20] |
Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487 |
2021 Impact Factor: 1.273
Tools
Article outline
Figures and Tables
[Back to Top]