
-
Previous Article
On the spherical geopotential approximation for Saturn
- CPAA Home
- This Issue
-
Next Article
Hamiltonian description of internal ocean waves with Coriolis force
Weakly nonlinear waves in stratified shear flows
1. | Delft University of Technology, Delft Institute of Applied Mathematics, Faculty of EEMCS, Mekelweg 4, 2628 CD Delft, The Netherlands |
2. | University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria |
We develop a Korteweg–De Vries (KdV) theory for weakly nonlinear waves in discontinuously stratified two-layer fluids with a generally prescribed rotational steady current. With the help of a classical asymptotic power series approach, these models are directly derived from the divergence-free incompressible Euler equations for unidirectional free surface and internal waves over a flat bed. Moreover, we derive a Burns condition for the determination of wave propagation speeds. Several examples of currents are given; explicit calculations of the corresponding propagation speeds and KdV coefficients are provided as well.
References:
[1] |
T. B. Benjamin,
The solitary wave on a stream with an arbitrary distribution of vorticity, J. Fluid Mech., 12 (1962), 97-116.
doi: 10.1017/S0022112062000063. |
[2] |
J. Burns,
Long waves in running water, Math. Proc. Cambridge Philos., 49 (1953), 695-706.
doi: 10.1017/S0305004100028899. |
[3] |
A. Compelli,
Hamiltonian approach to the modeling of internal geophysical waves with vorticity, Monatsh. Math., 179 (2016), 509-521.
doi: 10.1007/s00605-014-0724-1. |
[4] |
A. Compelli and R. I. Ivanov,
The dynamics of flat surface internal geophysical waves with currents, J. Math. Fluid Mech., 19 (2017), 329-344.
doi: 10.1007/s00021-016-0283-4. |
[5] |
A. Compelli, R. I. Ivanov and M. Todorov, Hamiltonian models for the propagation of irrotational surface gravity waves over a variable bottom, Phil. Trans. R. Soc. A, 376 (2018), 15 pp.
doi: 10.1098/rsta.2017.0091. |
[6] |
A. Compelli, R. I. Ivanov, C. I. Martin and M. D. Todorov,
Surface waves over currents and uneven bottom, Deep Sea Res. Part II, 160 (2019), 25-31.
doi: 10.1016/j.dsr2.2018.11.004. |
[7] |
A. Constantin and R. I. Ivanov, A Hamiltonian approach to wave-current interactions in two-layer fluids, Phy. Fluids, 27 (2015), 8 pp.
doi: 10.1063/1.4929457. |
[8] |
A. Constantin and R. I. Ivanov,
Equatorial wave-current interactions, Commun. Math. Phys., 370 (2019), 1-48.
doi: 10.1007/s00220-019-03483-8. |
[9] |
A. Constantin, R. I. Ivanov and C. I. Martin,
Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal., 221 (2016), 1417-1447.
doi: 10.1007/s00205-016-0990-2. |
[10] |
A. Constantin and R. S. Johnson,
The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109 (2015), 311-358.
doi: 10.1080/03091929.2015.1066785. |
[11] |
J. Cullen and R. I. Ivanov,
On the intermediate long wave propagation for internal waves in the presence of currents, Eur. J. Mech. B Fluids, 84 (2020), 325-333.
doi: 10.1016/j.euromechflu.2020.07.001. |
[12] |
N. C. Freeman and R. S. Johnson,
Shallow water waves on shear flows, J. Fluid Mech., 42 (1970), 401-409.
doi: 10.1017/S0022112070001349. |
[13] |
A. Geyer and R. Quirchmayr, Shallow water equations for equatorial tsunami waves, Philos. Trans. Roy. Soc. London Ser. A, 376 (2018), 12 pp.
doi: 10.1098/rsta.2017.0100. |
[14] |
A. Geyer and R. Quirchmayr,
Shallow water models for stratified equatorial flows, Discrete Contin. Dyn. Syst., 39 (2019), 4533-4545.
doi: 10.3934/dcds.2019186. |
[15] |
D. Ionescu-Kruse and C. I. Martin,
Periodic equatorial water flows from a Hamiltonian perspective, J. Differ. Equ., 262 (2017), 4451-4474.
doi: 10.1016/j.jde.2017.01.001. |
[16] |
R. I. Ivanov,
Hamiltonian model for coupled surface and internal waves in the presence of currents, Nonlinear Anal. Real World Appl., 34 (2017), 316-334.
doi: 10.1016/j.nonrwa.2016.09.010. |
[17] |
R. S. Johnson,
On the nonlinear critical layer below a nonlinear unsteady surface wave, J. Fluid Mech., 167 (1986), 327-351.
doi: 10.1017/S0022112086002847. |
[18] |
R. S. Johnson,
On solutions of the Burns condition (which determines the speed of propagation of linear long waves on a shear flow with or without a critical layer), Geophys. Astrophys. Fluid Dyn., 57 (1991), 115-133.
doi: 10.1080/03091929108225231. |
[19] |
R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, Cambridge, UK, 1997.
doi: 10.1017/CBO9780511624056.![]() ![]() ![]() |
[20] |
R. S. Johnson,
A problem in the classical theory of water waves: weakly nonlinear waves in the presence of vorticity, J. Nonlinear Math. Phys., 19 (2012), 137-160.
doi: 10.1142/S1402925112400128. |
[21] |
R. S. Johnson,
An ocean undercurrent, a thermocline, a free surface, with waves: a problem in classical fluid mechanics, J. Nonlinear Math. Phys., 22 (2015), 475-493.
doi: 10.1080/14029251.2015.1113042. |
[22] |
C. I. Martin, Azimuthal equatorial flows in spherical coordinates with discontinuous stratification, Phys. Fluids, 33 (2021), 9 pp.
doi: 10.1063/5.0035443. |
[23] |
C. I. Martin and R. Quirchmayr,
Exact solutions and internal waves for the Antarctic Circumpolar Current in spherical coordinates, Stud. Appl. Math., 48 (2022), 1021-1039.
doi: 10.1111/sapm.12467. |
show all references
References:
[1] |
T. B. Benjamin,
The solitary wave on a stream with an arbitrary distribution of vorticity, J. Fluid Mech., 12 (1962), 97-116.
doi: 10.1017/S0022112062000063. |
[2] |
J. Burns,
Long waves in running water, Math. Proc. Cambridge Philos., 49 (1953), 695-706.
doi: 10.1017/S0305004100028899. |
[3] |
A. Compelli,
Hamiltonian approach to the modeling of internal geophysical waves with vorticity, Monatsh. Math., 179 (2016), 509-521.
doi: 10.1007/s00605-014-0724-1. |
[4] |
A. Compelli and R. I. Ivanov,
The dynamics of flat surface internal geophysical waves with currents, J. Math. Fluid Mech., 19 (2017), 329-344.
doi: 10.1007/s00021-016-0283-4. |
[5] |
A. Compelli, R. I. Ivanov and M. Todorov, Hamiltonian models for the propagation of irrotational surface gravity waves over a variable bottom, Phil. Trans. R. Soc. A, 376 (2018), 15 pp.
doi: 10.1098/rsta.2017.0091. |
[6] |
A. Compelli, R. I. Ivanov, C. I. Martin and M. D. Todorov,
Surface waves over currents and uneven bottom, Deep Sea Res. Part II, 160 (2019), 25-31.
doi: 10.1016/j.dsr2.2018.11.004. |
[7] |
A. Constantin and R. I. Ivanov, A Hamiltonian approach to wave-current interactions in two-layer fluids, Phy. Fluids, 27 (2015), 8 pp.
doi: 10.1063/1.4929457. |
[8] |
A. Constantin and R. I. Ivanov,
Equatorial wave-current interactions, Commun. Math. Phys., 370 (2019), 1-48.
doi: 10.1007/s00220-019-03483-8. |
[9] |
A. Constantin, R. I. Ivanov and C. I. Martin,
Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal., 221 (2016), 1417-1447.
doi: 10.1007/s00205-016-0990-2. |
[10] |
A. Constantin and R. S. Johnson,
The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109 (2015), 311-358.
doi: 10.1080/03091929.2015.1066785. |
[11] |
J. Cullen and R. I. Ivanov,
On the intermediate long wave propagation for internal waves in the presence of currents, Eur. J. Mech. B Fluids, 84 (2020), 325-333.
doi: 10.1016/j.euromechflu.2020.07.001. |
[12] |
N. C. Freeman and R. S. Johnson,
Shallow water waves on shear flows, J. Fluid Mech., 42 (1970), 401-409.
doi: 10.1017/S0022112070001349. |
[13] |
A. Geyer and R. Quirchmayr, Shallow water equations for equatorial tsunami waves, Philos. Trans. Roy. Soc. London Ser. A, 376 (2018), 12 pp.
doi: 10.1098/rsta.2017.0100. |
[14] |
A. Geyer and R. Quirchmayr,
Shallow water models for stratified equatorial flows, Discrete Contin. Dyn. Syst., 39 (2019), 4533-4545.
doi: 10.3934/dcds.2019186. |
[15] |
D. Ionescu-Kruse and C. I. Martin,
Periodic equatorial water flows from a Hamiltonian perspective, J. Differ. Equ., 262 (2017), 4451-4474.
doi: 10.1016/j.jde.2017.01.001. |
[16] |
R. I. Ivanov,
Hamiltonian model for coupled surface and internal waves in the presence of currents, Nonlinear Anal. Real World Appl., 34 (2017), 316-334.
doi: 10.1016/j.nonrwa.2016.09.010. |
[17] |
R. S. Johnson,
On the nonlinear critical layer below a nonlinear unsteady surface wave, J. Fluid Mech., 167 (1986), 327-351.
doi: 10.1017/S0022112086002847. |
[18] |
R. S. Johnson,
On solutions of the Burns condition (which determines the speed of propagation of linear long waves on a shear flow with or without a critical layer), Geophys. Astrophys. Fluid Dyn., 57 (1991), 115-133.
doi: 10.1080/03091929108225231. |
[19] |
R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, Cambridge, UK, 1997.
doi: 10.1017/CBO9780511624056.![]() ![]() ![]() |
[20] |
R. S. Johnson,
A problem in the classical theory of water waves: weakly nonlinear waves in the presence of vorticity, J. Nonlinear Math. Phys., 19 (2012), 137-160.
doi: 10.1142/S1402925112400128. |
[21] |
R. S. Johnson,
An ocean undercurrent, a thermocline, a free surface, with waves: a problem in classical fluid mechanics, J. Nonlinear Math. Phys., 22 (2015), 475-493.
doi: 10.1080/14029251.2015.1113042. |
[22] |
C. I. Martin, Azimuthal equatorial flows in spherical coordinates with discontinuous stratification, Phys. Fluids, 33 (2021), 9 pp.
doi: 10.1063/5.0035443. |
[23] |
C. I. Martin and R. Quirchmayr,
Exact solutions and internal waves for the Antarctic Circumpolar Current in spherical coordinates, Stud. Appl. Math., 48 (2022), 1021-1039.
doi: 10.1111/sapm.12467. |

[1] |
Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397 |
[2] |
Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109 |
[3] |
Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016 |
[4] |
Delia Ionescu-Kruse, Anca-Voichita Matioc. Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3045-3060. doi: 10.3934/dcds.2014.34.3045 |
[5] |
Raphael Stuhlmeier. Effects of shear flow on KdV balance - applications to tsunami. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1549-1561. doi: 10.3934/cpaa.2012.11.1549 |
[6] |
Wenzhang Huang. Weakly coupled traveling waves for a model of growth and competition in a flow reactor. Mathematical Biosciences & Engineering, 2006, 3 (1) : 79-87. doi: 10.3934/mbe.2006.3.79 |
[7] |
Walter A. Strauss. Vorticity jumps in steady water waves. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101 |
[8] |
Alex Mahalov, Mohamed Moustaoui, Basil Nicolaenko. Three-dimensional instabilities in non-parallel shear stratified flows. Kinetic and Related Models, 2009, 2 (1) : 215-229. doi: 10.3934/krm.2009.2.215 |
[9] |
Rui Huang, Ming Mei, Yong Wang. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3621-3649. doi: 10.3934/dcds.2012.32.3621 |
[10] |
Yuqian Zhou, Qian Liu. Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 2057-2071. doi: 10.3934/dcdsb.2016036 |
[11] |
Jundong Wang, Lijun Zhang, Elena Shchepakina, Vladimir Sobolev. Solitary waves of singularly perturbed generalized KdV equation with high order nonlinearity. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022124 |
[12] |
Patrick Martinez, Jean-Michel Roquejoffre. The rate of attraction of super-critical waves in a Fisher-KPP type model with shear flow. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2445-2472. doi: 10.3934/cpaa.2012.11.2445 |
[13] |
Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878 |
[14] |
Eric S. Wright. Macrotransport in nonlinear, reactive, shear flows. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2125-2146. doi: 10.3934/cpaa.2012.11.2125 |
[15] |
David Henry, Rossen Ivanov. One-dimensional weakly nonlinear model equations for Rossby waves. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3025-3034. doi: 10.3934/dcds.2014.34.3025 |
[16] |
Nate Bottman, Bernard Deconinck. KdV cnoidal waves are spectrally stable. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1163-1180. doi: 10.3934/dcds.2009.25.1163 |
[17] |
H. Beirão da Veiga. Vorticity and regularity for flows under the Navier boundary condition. Communications on Pure and Applied Analysis, 2006, 5 (4) : 907-918. doi: 10.3934/cpaa.2006.5.907 |
[18] |
Raphael Stuhlmeier. Internal Gerstner waves on a sloping bed. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3183-3192. doi: 10.3934/dcds.2014.34.3183 |
[19] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051 |
[20] |
Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]