July  2022, 21(7): 2463-2477. doi: 10.3934/cpaa.2022064

The surface current of Ekman flows with time-dependent eddy viscosity

Faculty of Mathematics, University of Vienna, Oskar–Morgenstern–Platz 1, 1090 Vienna, Austria

Received  September 2021 Revised  February 2022 Published  July 2022 Early access  March 2022

In this paper we investigate transients in the oceanic Ekman layer in the presence of time-varying winds and a constant-in-depth but time dependent eddy viscosity, where the initial state is taken to be the steady state corresponding to the initial wind and the initial eddy viscosity. For this specific situation, a formula for the evolution of the surface current can be derived explicitly. We show that, if the wind and the eddy viscosity converge toward constant values for large times, under mild assumptions on their convergence rate the solution converges toward the corresponding steady state. The time evolution of the surface current and the surface deflection angle is visualized with the aid of simple numerical plots for some specific examples.

Citation: Luigi Roberti. The surface current of Ekman flows with time-dependent eddy viscosity. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2463-2477. doi: 10.3934/cpaa.2022064
References:
[1]

A. Bressan and A. Constantin, The deflection angle of surface ocean currents from the wind direction, J. Geophys. Res.: Oceans, 124 (2019), 7412-7420.  doi: 10.1029/2019JC015454.

[2]

A. Constantin, Frictional effects in wind-driven ocean currents, Geophys. Astro. Fluid Dyn., 115 (2021), 1-14.  doi: 10.1080/03091929.2020.1748614.

[3]

A. Constantin and R. I. Ivanov, Equatorial wave-current interactions, Comm. Math. Phys., 370 (2019), 1-48.  doi: 10.1007/s00220-019-03483-8.

[4]

A. Constantin and R. S. Johnson, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astro. Fluid Dyn., 109 (2015), 311-358.  doi: 10.1080/03091929.2015.1066785.

[5]

A. Constantin and R. S. Johnson, Atmospheric Ekman flows with variable eddy viscosity, Bound. Layer Meteorol., 170 (2019), 395-414.  doi: 10.1007/s10546-018-0404-0.

[6]

A. Constantin and R. S. Johnson, Ekman-type solutions for shallow-water flows on a rotating sphere: a new perspective on a classical problem, Phys. Fluids, 31 (2019), 021401, 15 pp. doi: 10.1063/1.5083088.

[7]

A. Constantin and R. S. Johnson, On the modelling of large-scale atmospheric flows, J. Differ. Equ., 285 (2021), 751-798.  doi: 10.1016/j.jde.2021.03.019.

[8]

M. F. Cronin and W. S. Kessler, Near-surface shear flow in the tropical Pacific cold tongue front, J. Phys. Oceanogr., 39 (2009), 1200-1215.  doi: 10.1175/2008JPO4064.1.

[9]

D. G. DritschelN. Paldor and A. Constantin, The Ekman spiral for piecewise-uniform viscosity, Ocean Sci., 16 (2020), 1089-1093.  doi: 10.5194/os-16-1089-2020.

[10]

V. W. Ekman, On the influence of the Earth's rotation on ocean-currents, Ark. Mat. Astron. Fys., 2 (1905), 1-52. 

[11]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th Edition, Academic Press, New York, NY, 2007.

[12]

B. Grisogono, A generalized Ekman layer profile with gradually varying eddy diffusivities, Quart. J. Roy. Meteorol. Soc., 121 (1995), 445-453.  doi: 10.1002/qj.49712152211.

[13]

D. Ionescu-Kruse, Analytical atmospheric Ekman-type solutions with height-dependent eddy viscosities, J. Math. Fluid Mech., 23 (2021), 1-11.  doi: 10.1007/s00021-020-00543-1.

[14]

D. M. Lewis and S. E. Belcher, Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift, Dyn. Atmospheres Oceans, 37 (2004), 313-351.  doi: 10.1016/j.dynatmoce.2003.11.001.

[15]

T. Lyons, Variable eddy viscosities in the atmospheric boundary layer from ageostrophic wind-speed profiles, J. Math. Fluid Mech., 23 (2021), 16 pp. doi: 10.1007/s00021-021-00575-1.

[16]

O. S. Madsen, A realistic model of the wind-induced Ekman boundary layer, J. Phys. Oceanogr., 7 (1977), 248-255.  doi: 10.1175/1520-0485(1977)007<0248:ARMOTW>2.0.CO;2.

[17]

A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, 2$^{\text{nd}}$ Edition, CRC Press LLC, Boca Raton, FL, 2003.

[18]

J. F. Price and M. A. Sundermeyer, Stratified Ekman layers, J. Geophys. Res.: Oceans, 104, No. C9 (1999), 20467–20494. doi: 10.1029/1999JC900164.

[19]

J. F. PriceR. A. Weller and R. R. Schudlich, Wind-driven ocean currents and Ekman transport, Science, 238 (1987), 1534-1538.  doi: 10.1126/science.238.4833.1534.

[20]

L. Roberti, Perturbation analysis for the surface deflection angle of Ekman-type flows with variable eddy viscosity, J. Math. Fluid Mech., 23, No. 57 (2021), 1–7. doi: 10.1007/s00021-021-00586-y.

[21]

J. Röhrs and K. H. Christensen, Drift in the uppermost part of the ocean, Geophys. Res. Lett., 42 (2015), 10349-10356.  doi: 10.1002/2015GL066733.

[22]

V. I. Shrira and R. B. Almelah, Upper-ocean Ekman current dynamics: a new perspective, J. Fluid Mech., 887 (2020), 33 pp. doi: 10.1017/jfm.2019.1059.

[23]

V. I. Shrira and R. B. Almelah, What do we need to probe upper ocean stratification remotely?, Radio. Quant. Electron., 63 (2020), 1-20.  doi: 10.1007/s11141-020-10030-2.

[24]

G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2nd Edition, Cambridge University Press, Cambridge, 2017.

[25]

W. Wang and R. X. Huang, Wind energy input to the Ekman layer, J. Phys. Oceanogr., 34 (2004), 1267-1275.  doi: 10.1175/1520-0485(2004)034<1267:WEITTE>2.0.CO;2.

[26]

J. O. Wenegrat and M. J. McPhaden, Wind, waves, and fronts: frictional effects in a generalized Ekman model, J. Phys. Oceanogr., 46 (2016), 371-394.  doi: 10.1175/JPO-D-15-0162.1.

show all references

References:
[1]

A. Bressan and A. Constantin, The deflection angle of surface ocean currents from the wind direction, J. Geophys. Res.: Oceans, 124 (2019), 7412-7420.  doi: 10.1029/2019JC015454.

[2]

A. Constantin, Frictional effects in wind-driven ocean currents, Geophys. Astro. Fluid Dyn., 115 (2021), 1-14.  doi: 10.1080/03091929.2020.1748614.

[3]

A. Constantin and R. I. Ivanov, Equatorial wave-current interactions, Comm. Math. Phys., 370 (2019), 1-48.  doi: 10.1007/s00220-019-03483-8.

[4]

A. Constantin and R. S. Johnson, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astro. Fluid Dyn., 109 (2015), 311-358.  doi: 10.1080/03091929.2015.1066785.

[5]

A. Constantin and R. S. Johnson, Atmospheric Ekman flows with variable eddy viscosity, Bound. Layer Meteorol., 170 (2019), 395-414.  doi: 10.1007/s10546-018-0404-0.

[6]

A. Constantin and R. S. Johnson, Ekman-type solutions for shallow-water flows on a rotating sphere: a new perspective on a classical problem, Phys. Fluids, 31 (2019), 021401, 15 pp. doi: 10.1063/1.5083088.

[7]

A. Constantin and R. S. Johnson, On the modelling of large-scale atmospheric flows, J. Differ. Equ., 285 (2021), 751-798.  doi: 10.1016/j.jde.2021.03.019.

[8]

M. F. Cronin and W. S. Kessler, Near-surface shear flow in the tropical Pacific cold tongue front, J. Phys. Oceanogr., 39 (2009), 1200-1215.  doi: 10.1175/2008JPO4064.1.

[9]

D. G. DritschelN. Paldor and A. Constantin, The Ekman spiral for piecewise-uniform viscosity, Ocean Sci., 16 (2020), 1089-1093.  doi: 10.5194/os-16-1089-2020.

[10]

V. W. Ekman, On the influence of the Earth's rotation on ocean-currents, Ark. Mat. Astron. Fys., 2 (1905), 1-52. 

[11]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th Edition, Academic Press, New York, NY, 2007.

[12]

B. Grisogono, A generalized Ekman layer profile with gradually varying eddy diffusivities, Quart. J. Roy. Meteorol. Soc., 121 (1995), 445-453.  doi: 10.1002/qj.49712152211.

[13]

D. Ionescu-Kruse, Analytical atmospheric Ekman-type solutions with height-dependent eddy viscosities, J. Math. Fluid Mech., 23 (2021), 1-11.  doi: 10.1007/s00021-020-00543-1.

[14]

D. M. Lewis and S. E. Belcher, Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift, Dyn. Atmospheres Oceans, 37 (2004), 313-351.  doi: 10.1016/j.dynatmoce.2003.11.001.

[15]

T. Lyons, Variable eddy viscosities in the atmospheric boundary layer from ageostrophic wind-speed profiles, J. Math. Fluid Mech., 23 (2021), 16 pp. doi: 10.1007/s00021-021-00575-1.

[16]

O. S. Madsen, A realistic model of the wind-induced Ekman boundary layer, J. Phys. Oceanogr., 7 (1977), 248-255.  doi: 10.1175/1520-0485(1977)007<0248:ARMOTW>2.0.CO;2.

[17]

A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, 2$^{\text{nd}}$ Edition, CRC Press LLC, Boca Raton, FL, 2003.

[18]

J. F. Price and M. A. Sundermeyer, Stratified Ekman layers, J. Geophys. Res.: Oceans, 104, No. C9 (1999), 20467–20494. doi: 10.1029/1999JC900164.

[19]

J. F. PriceR. A. Weller and R. R. Schudlich, Wind-driven ocean currents and Ekman transport, Science, 238 (1987), 1534-1538.  doi: 10.1126/science.238.4833.1534.

[20]

L. Roberti, Perturbation analysis for the surface deflection angle of Ekman-type flows with variable eddy viscosity, J. Math. Fluid Mech., 23, No. 57 (2021), 1–7. doi: 10.1007/s00021-021-00586-y.

[21]

J. Röhrs and K. H. Christensen, Drift in the uppermost part of the ocean, Geophys. Res. Lett., 42 (2015), 10349-10356.  doi: 10.1002/2015GL066733.

[22]

V. I. Shrira and R. B. Almelah, Upper-ocean Ekman current dynamics: a new perspective, J. Fluid Mech., 887 (2020), 33 pp. doi: 10.1017/jfm.2019.1059.

[23]

V. I. Shrira and R. B. Almelah, What do we need to probe upper ocean stratification remotely?, Radio. Quant. Electron., 63 (2020), 1-20.  doi: 10.1007/s11141-020-10030-2.

[24]

G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2nd Edition, Cambridge University Press, Cambridge, 2017.

[25]

W. Wang and R. X. Huang, Wind energy input to the Ekman layer, J. Phys. Oceanogr., 34 (2004), 1267-1275.  doi: 10.1175/1520-0485(2004)034<1267:WEITTE>2.0.CO;2.

[26]

J. O. Wenegrat and M. J. McPhaden, Wind, waves, and fronts: frictional effects in a generalized Ekman model, J. Phys. Oceanogr., 46 (2016), 371-394.  doi: 10.1175/JPO-D-15-0162.1.

Figure 1.  Plots of $ \tan(\theta_0(t)) $ (left) and the (normalized) velocity components (right) for $ K(t) = c\vert\tau(t)\vert $ and $ \tau(t) = 2- \mathrm{e}^{-t^2} $
Figure 2.  Plots of $ \tan(\theta_0(t)) $ (left) and the (normalized) velocity components (right) for $ \tau(t) = 1+ \mathrm{e}^{-t^2} $
Figure 3.  Plots of $ \tan(\theta_0(t)) $ (left) and the (normalized) velocity components (right) for $ \tau(t) = 1+2t^2\left(1-\frac{3}{4}t^2\right) \mathrm{e}^{-t^2} $
[1]

Nicola Guglielmi, László Hatvani. On small oscillations of mechanical systems with time-dependent kinetic and potential energy. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 911-926. doi: 10.3934/dcds.2008.20.911

[2]

Hedy Attouch, Alexandre Cabot, Zaki Chbani, Hassan Riahi. Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient. Evolution Equations and Control Theory, 2018, 7 (3) : 353-371. doi: 10.3934/eect.2018018

[3]

Takeshi Fukao, Masahiro Kubo. Time-dependent obstacle problem in thermohydraulics. Conference Publications, 2009, 2009 (Special) : 240-249. doi: 10.3934/proc.2009.2009.240

[4]

Giuseppe Maria Coclite, Mauro Garavello, Laura V. Spinolo. Optimal strategies for a time-dependent harvesting problem. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 865-900. doi: 10.3934/dcdss.2018053

[5]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[6]

Morteza Fotouhi, Mohsen Yousefnezhad. Homogenization of a locally periodic time-dependent domain. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1669-1695. doi: 10.3934/cpaa.2020061

[7]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Time-dependent systems of generalized Young measures. Networks and Heterogeneous Media, 2007, 2 (1) : 1-36. doi: 10.3934/nhm.2007.2.1

[8]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure and Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[9]

Mourad Choulli, Yavar Kian. Stability of the determination of a time-dependent coefficient in parabolic equations. Mathematical Control and Related Fields, 2013, 3 (2) : 143-160. doi: 10.3934/mcrf.2013.3.143

[10]

Leonardo J. Colombo, María Emma Eyrea Irazú, Eduardo García-Toraño Andrés. A note on Hybrid Routh reduction for time-dependent Lagrangian systems. Journal of Geometric Mechanics, 2020, 12 (2) : 309-321. doi: 10.3934/jgm.2020014

[11]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems and Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[12]

Feng Zhou, Chunyou Sun, Xin Li. Dynamics for the damped wave equations on time-dependent domains. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1645-1674. doi: 10.3934/dcdsb.2018068

[13]

Chan Liu, Jin Wen, Zhidong Zhang. Reconstruction of the time-dependent source term in a stochastic fractional diffusion equation. Inverse Problems and Imaging, 2020, 14 (6) : 1001-1024. doi: 10.3934/ipi.2020053

[14]

María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201

[15]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[16]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations and Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015

[17]

Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035

[18]

Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations and Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331

[19]

Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039

[20]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

2021 Impact Factor: 1.273

Article outline

Figures and Tables

[Back to Top]