-
Previous Article
The effect of the weight function on the number of nodal solutions of the Kirchhoff-type equations in high dimensions
- CPAA Home
- This Issue
-
Next Article
The Łojasiewicz inequality for free energy functionals on a graph
On the solvability of a semilinear higher-order elliptic problem for the vector field method in image registration
1. | Elementary Education School, Hainan Normal University, Haikou 571158, China |
2. | School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, China |
$ \mathcal{L}v(t, \cdot) = F_{S, T}\circ G(v)(t, \cdot), \quad \forall t\in [0, \tau], $ |
$ \mathcal{L} = (-\Delta)^m $ |
$ m $ |
$ v = v(t, x):[0, \tau]\times\Omega\rightarrow \mathbb{R}^n $ |
$ t $ |
$ F_{S, T} $ |
$ S $ |
$ T $ |
$ G(v)(t, x) $ |
$ y^v(s;t, x) $ |
$ {\rm d}y/\mathrm{d}s = v(s, y), \quad y(t) = x $ |
References:
[1] |
S. Arguill$\grave{e}$re and E. Tr$\acute{e}$lat, Sub-Riemannian structures on groups of diffeomorphisms, J. Inst. Math. Jussieu, 2014. |
[2] |
V.I. Arnold, Ordinary Differerntial Equations, Springer-Verlag, Berlin, 1992. |
[3] |
A. Bahrouni,
Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity, Commun. Pure Appl. Anal., 16 (2017), 243-252.
doi: 10.3934/cpaa.2017011. |
[4] |
J. Bao, N. Lam and G. Lu,
Polyharmonic equations with critical exponential growth in the whole space $\mathbb{R}^N$, Discrete Contin. Dyn. Syst., 36 (2016), 577-600.
doi: 10.3934/dcds.2016.36.577. |
[5] |
M.F. Beg, M.I. Miller, A. Trouv$\acute{e}$ and L. Younes,
Computing large deformation metric mappings via geodesic flows of diffeomorphisms, Int. J. Comput. Vision, 61 (2005), 139-157.
|
[6] |
L.G. Brown,
A survey of image registration techniques, ACM Comput. Surv., 24 (1992), 325-376.
|
[7] |
L. Chen, J. Li, G. Lu and C. Zhang,
Sharpened Adams inequlity and ground state solutions to the bi-Laplacian equation in $\mathbb{R}^4$, Adv. Nonlinear Stud., 18 (2018), 429-452.
doi: 10.1515/ans-2018-2020. |
[8] |
M. Chuaqui, C. Cortázar, M. Elgueta and J. García-Melián,
Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights, Commun. Pure Appl. Anal., 3 (2004), 653-662.
doi: 10.3934/cpaa.2004.3.653. |
[9] |
J. Davila, L. Dupaigne, I. Guerra and M. Montenegro,
Stable solutions for the bilaplacian with exponential nonlinearity, SIAM J. Math. Anal., 39 (2007), 565-592.
doi: 10.1137/060665579. |
[10] |
W. Du,
Existence and uniqueness of large solutions for competitive type elliptic systems, Int. Journal of Math. Analysis, 7 (2013), 2878-2884.
doi: 10.12988/ijma.2013.36159. |
[11] |
P. Dupuis, U. Grenander and M.I. Miller,
Variational problems on flows of diffeomorphisms for image matching, Q. Appl. Math., 56 (1998), 587-600.
doi: 10.1090/qam/1632326. |
[12] |
L. C. Evants, Partial Differential Equations, American Mathematical Society, Providence, 2010.
doi: 10.1090/gsm/019. |
[13] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Springer-Verlag, Netherlands, 1988.
doi: 10.1007/978-94-015-7793-9. |
[14] |
F. Gazzola, H. C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-12245-3. |
[15] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^{nd}$ edition, Springer-Verlag, Berlin, 2001. |
[16] |
D. L. Hill, P. G. Batchelor, M. Holden and D. J. Hawkes, Medical image registration, Phys. Med. Biol., 46 (2001), R1–R45. |
[17] |
A. Iannizzotto and M. Squassina,
1/2-Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl., 414 (2014), 372-385.
doi: 10.1016/j.jmaa.2013.12.059. |
[18] |
A. Klein, J. Andersson and B. A. Ardekani,
Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration, NeuroImage, 46 (2009), 786-802.
|
[19] |
N. Lam and G. Lu,
Existence and multiplicity of solutions to equations of N-Laplacian type with critical exponential growth in $\mathbb{R}^N$, J. Funct. Anal., 262 (2012), 1132-1165.
doi: 10.1016/j.jfa.2011.10.012. |
[20] |
N. Lam and G. Lu,
Existence of nontrivial solutions to polyharmonic equations with subcritical and critical exponential growth, Discrete Contin. Dyn. Syst., 32 (2012), 2187-2205.
doi: 10.3934/dcds.2012.32.2187. |
[21] |
C. Liu and Z. Yang,
Boundary blow-up quasilinear elliptic problems of the Bieberbach type with nonlinear gradient terms, Nonlinear Anal., 69 (2008), 4380-4391.
doi: 10.1016/j.na.2007.10.060. |
[22] |
J. Moser,
A sharp form of an inequality by N.Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.
doi: 10.1512/iumj.1971.20.20101. |
[23] |
B. Tr$\acute{e}$lat, Optimal Control, Theory and Applications, Vuibert, Paris, 2005. |
[24] |
L. Yin, Y. Guo, J. Yang, B. Lu and Q. Zhang,
Existence and asymptotic behavior of boundary blow-up solutions for weighted p(x)-Laplacian equations with exponential nonlinearities, Abstr. Appl. Anal., 2010 (2010), 1-20.
doi: 10.1155/2010/971268. |
show all references
References:
[1] |
S. Arguill$\grave{e}$re and E. Tr$\acute{e}$lat, Sub-Riemannian structures on groups of diffeomorphisms, J. Inst. Math. Jussieu, 2014. |
[2] |
V.I. Arnold, Ordinary Differerntial Equations, Springer-Verlag, Berlin, 1992. |
[3] |
A. Bahrouni,
Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity, Commun. Pure Appl. Anal., 16 (2017), 243-252.
doi: 10.3934/cpaa.2017011. |
[4] |
J. Bao, N. Lam and G. Lu,
Polyharmonic equations with critical exponential growth in the whole space $\mathbb{R}^N$, Discrete Contin. Dyn. Syst., 36 (2016), 577-600.
doi: 10.3934/dcds.2016.36.577. |
[5] |
M.F. Beg, M.I. Miller, A. Trouv$\acute{e}$ and L. Younes,
Computing large deformation metric mappings via geodesic flows of diffeomorphisms, Int. J. Comput. Vision, 61 (2005), 139-157.
|
[6] |
L.G. Brown,
A survey of image registration techniques, ACM Comput. Surv., 24 (1992), 325-376.
|
[7] |
L. Chen, J. Li, G. Lu and C. Zhang,
Sharpened Adams inequlity and ground state solutions to the bi-Laplacian equation in $\mathbb{R}^4$, Adv. Nonlinear Stud., 18 (2018), 429-452.
doi: 10.1515/ans-2018-2020. |
[8] |
M. Chuaqui, C. Cortázar, M. Elgueta and J. García-Melián,
Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights, Commun. Pure Appl. Anal., 3 (2004), 653-662.
doi: 10.3934/cpaa.2004.3.653. |
[9] |
J. Davila, L. Dupaigne, I. Guerra and M. Montenegro,
Stable solutions for the bilaplacian with exponential nonlinearity, SIAM J. Math. Anal., 39 (2007), 565-592.
doi: 10.1137/060665579. |
[10] |
W. Du,
Existence and uniqueness of large solutions for competitive type elliptic systems, Int. Journal of Math. Analysis, 7 (2013), 2878-2884.
doi: 10.12988/ijma.2013.36159. |
[11] |
P. Dupuis, U. Grenander and M.I. Miller,
Variational problems on flows of diffeomorphisms for image matching, Q. Appl. Math., 56 (1998), 587-600.
doi: 10.1090/qam/1632326. |
[12] |
L. C. Evants, Partial Differential Equations, American Mathematical Society, Providence, 2010.
doi: 10.1090/gsm/019. |
[13] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Springer-Verlag, Netherlands, 1988.
doi: 10.1007/978-94-015-7793-9. |
[14] |
F. Gazzola, H. C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-12245-3. |
[15] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2$^{nd}$ edition, Springer-Verlag, Berlin, 2001. |
[16] |
D. L. Hill, P. G. Batchelor, M. Holden and D. J. Hawkes, Medical image registration, Phys. Med. Biol., 46 (2001), R1–R45. |
[17] |
A. Iannizzotto and M. Squassina,
1/2-Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl., 414 (2014), 372-385.
doi: 10.1016/j.jmaa.2013.12.059. |
[18] |
A. Klein, J. Andersson and B. A. Ardekani,
Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration, NeuroImage, 46 (2009), 786-802.
|
[19] |
N. Lam and G. Lu,
Existence and multiplicity of solutions to equations of N-Laplacian type with critical exponential growth in $\mathbb{R}^N$, J. Funct. Anal., 262 (2012), 1132-1165.
doi: 10.1016/j.jfa.2011.10.012. |
[20] |
N. Lam and G. Lu,
Existence of nontrivial solutions to polyharmonic equations with subcritical and critical exponential growth, Discrete Contin. Dyn. Syst., 32 (2012), 2187-2205.
doi: 10.3934/dcds.2012.32.2187. |
[21] |
C. Liu and Z. Yang,
Boundary blow-up quasilinear elliptic problems of the Bieberbach type with nonlinear gradient terms, Nonlinear Anal., 69 (2008), 4380-4391.
doi: 10.1016/j.na.2007.10.060. |
[22] |
J. Moser,
A sharp form of an inequality by N.Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.
doi: 10.1512/iumj.1971.20.20101. |
[23] |
B. Tr$\acute{e}$lat, Optimal Control, Theory and Applications, Vuibert, Paris, 2005. |
[24] |
L. Yin, Y. Guo, J. Yang, B. Lu and Q. Zhang,
Existence and asymptotic behavior of boundary blow-up solutions for weighted p(x)-Laplacian equations with exponential nonlinearities, Abstr. Appl. Anal., 2010 (2010), 1-20.
doi: 10.1155/2010/971268. |
[1] |
Dongho Chae. Existence of a semilinear elliptic system with exponential nonlinearities. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 709-718. doi: 10.3934/dcds.2007.18.709 |
[2] |
Kui Li, Zhitao Zhang. Liouville-type theorem for higher-order Hardy-Hénon system. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3851-3869. doi: 10.3934/cpaa.2021134 |
[3] |
Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775 |
[4] |
Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990 |
[5] |
Shu Luan. On the existence of optimal control for semilinear elliptic equations with nonlinear neumann boundary conditions. Mathematical Control and Related Fields, 2017, 7 (3) : 493-506. doi: 10.3934/mcrf.2017018 |
[6] |
Yu Guo, Xiao-Bao Shu, Qianbao Yin. Existence of solutions for first-order Hamiltonian random impulsive differential equations with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4455-4471. doi: 10.3934/dcdsb.2021236 |
[7] |
George J. Bautista, Ademir F. Pazoto. Decay of solutions for a dissipative higher-order Boussinesq system on a periodic domain. Communications on Pure and Applied Analysis, 2020, 19 (2) : 747-769. doi: 10.3934/cpaa.2020035 |
[8] |
Robert Jankowski, Barbara Łupińska, Magdalena Nockowska-Rosiak, Ewa Schmeidel. Monotonic solutions of a higher-order neutral difference system. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 253-261. doi: 10.3934/dcdsb.2018017 |
[9] |
Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4051-4059. doi: 10.3934/dcds.2022045 |
[10] |
Yimei Li, Jiguang Bao. Semilinear elliptic system with boundary singularity. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2189-2212. doi: 10.3934/dcds.2020111 |
[11] |
Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317 |
[12] |
Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023 |
[13] |
Feliz Minhós, A. I. Santos. Higher order two-point boundary value problems with asymmetric growth. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 127-137. doi: 10.3934/dcdss.2008.1.127 |
[14] |
Delia Schiera. Existence and non-existence results for variational higher order elliptic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5145-5161. doi: 10.3934/dcds.2018227 |
[15] |
Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 |
[16] |
Le Thi Phuong Ngoc, Khong Thi Thao Uyen, Nguyen Huu Nhan, Nguyen Thanh Long. On a system of nonlinear pseudoparabolic equations with Robin-Dirichlet boundary conditions. Communications on Pure and Applied Analysis, 2022, 21 (2) : 585-623. doi: 10.3934/cpaa.2021190 |
[17] |
Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1509-1537. doi: 10.3934/dcds.2017062 |
[18] |
Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81 |
[19] |
Maike Schulte, Anton Arnold. Discrete transparent boundary conditions for the Schrodinger equation -- a compact higher order scheme. Kinetic and Related Models, 2008, 1 (1) : 101-125. doi: 10.3934/krm.2008.1.101 |
[20] |
Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]