-
Previous Article
Stability, existence and non-existence of $ T $-periodic solutions of nonlinear delayed differential equations with $ \varphi $-Laplacian
- CPAA Home
- This Issue
-
Next Article
On the solvability of a semilinear higher-order elliptic problem for the vector field method in image registration
The effect of the weight function on the number of nodal solutions of the Kirchhoff-type equations in high dimensions
School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China |
$ \begin{equation*} \left\{ \begin{array}{ll} -\varepsilon^2M\left(\varepsilon^{2-N}||\nabla u||^2_{L^2}\right)\Delta u+u = f\left(x\right)|u|^{p-2}u,\ \text{in}\ \mathbb{R}^N,\\ u\in H^1(\mathbb{R}^N), \end{array} \right. \end{equation*} $ |
$ N\geq 4 $ |
$ \varepsilon>0 $ |
$ M\left(t\right) = at+b\left(a,b>0\right) $ |
$ 2<p<2^* = \frac{2N}{N-2} $ |
$ f\in C\left(\mathbb{R}^N,\mathbb{R}^+\right) $ |
$ k $ |
$ \mathbb{R}^N $ |
$ k^2 $ |
$ N\geq4 $ |
$ \varepsilon,a $ |
References:
[1] |
A. Arosio and S. Panizzi,
On the well–posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305-330.
doi: 10.1090/S0002-9947-96-01532-2. |
[2] |
T. Bartsch and T. Weth,
Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 259-281.
doi: 10.1016/j.anihpc.2004.07.005. |
[3] |
S. Bernstein,
Sur une class d'équations fonctionnelles aux dérivés partielles, Bull. Acad. Sci. URSS, Sr. Math., 4 (1940), 17-26.
|
[4] |
V. Benci and D. Fortunato,
An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.
doi: 10.12775/TMNA.1998.019. |
[5] |
H. Brezis and E. H. Lieb,
A relation between pointwise convergence of functions and convergence functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
doi: 10.2307/2044999. |
[6] |
G. Cerami and D. Passaseo,
The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differ. Equ., 17 (2003), 257-281.
doi: 10.1007/s00526-002-0169-6. |
[7] |
M. Clapp and T. Weth,
Minimal nodal solutions of the pure critical exponent problem on a symmetric doamin, Calc. Var. Partial Differ. Equ., 21 (2004), 1-14.
doi: 10.1007/s00526-003-0241-x. |
[8] |
Y. B. Deng, S. J. Peng and W. Shuai,
Existence and asymptotic behavior of nodal solutions for the Kirchhoff–type problems in $\mathbb{R}^3$, J. Funct. Anal., 269 (2015), 3500-3527.
doi: 10.1016/j.jfa.2015.09.012. |
[9] |
I. Ekeland,
On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.
doi: 10.1016/0022-247X(74)90025-0. |
[10] |
G. Figueiredo and R. Nascimento,
Existence of a nodal solution with minimal energy for a Kirchhoff equation, Math. Nachr., 288 (2015), 48-60.
doi: 10.1002/mana.201300195. |
[11] |
G. Figueiredo and J. Santos, Existence of a least energy nodal solution for a SchrÖdinger–Kirchhoff equation with potential vanishing at infinity, J. Math. Phys., 56 (2015), 051506, 18pp.
doi: 10.1063/1.4921639. |
[12] |
Y. He, G. Li and S. Peng,
Concentrating bound states for Kirchhoff type problems in $\mathbb{R}^3$ involving critical Sobolev exponents, Adv. Nonlinear Stud., 14 (2014), 483-510.
doi: 10.1515/ans-2014-0214. |
[13] |
T. Hu and L. Lu,
Multiplicity of positive solutions for Kirchhoff type problems in $\mathbb{R}^3$, Topol. Methods Nonlinear Anal., 50 (2017), 231-252.
doi: 10.12775/tmna.2017.028. |
[14] | |
[15] |
J. L. Lions, On some questions in boundary value problems of mathematical physics, in: Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977, in: North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, 1978,284–346. |
[16] |
P. L. Lions,
The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1 (1984), 223-283.
|
[17] |
Y. Li and W. M. Ni,
Radial symmetry of positive solutions of nonlinear ellitic equations in $\mathbb{R}^N$, Commun. Partial Differ. Equ., 18 (1993), 1043-1054.
doi: 10.1080/03605309308820960. |
[18] |
C. Liu, H. Wang and T. F. Wu,
Multiplicity of 2-nodal solutions for semilinear elliptic problems in $\mathbb{R}^N$, J. Math. Anal. Appl., 348 (2008), 169-179.
doi: 10.1016/j.jmaa.2008.06.042. |
[19] |
S. I. Pohozaev,
A certain class of quasilinear hyperbolic equations, Mat. Sb. (NS), 96 (1975), 152-168.
|
[20] |
W. Shuai,
Sign–changing solutions for a class of Kirchhoff–type problem in bounded domains, J. Differ. Equ., 259 (2015), 1256-1274.
doi: 10.1016/j.jde.2015.02.040. |
[21] |
J. T. Sun, T. F. Wu and Z. Feng,
Multiplicity of positive solutions for a nonlinear Schrödinger-Poisson system, J. Differ. Equ., 260 (2016), 586-627.
doi: 10.1016/j.jde.2015.09.002. |
[22] |
J. T. Sun and T. F. Wu, On the Kirchhoff type equations in $\mathbb{R}^N$, 2019, arXiv: 1908.01326. |
[23] |
J. T. Sun and T. F. Wu,
Bound state nodal solutions for the non-autonomous Schrödinger–Poisson system in $\mathbb{R}^3$, J. Differ. Equ., 268 (2020), 7121-7163.
doi: 10.1016/j.jde.2019.11.070. |
[24] |
J. T. Sun and T. F. Wu,
The number of nodal solutions for the schrödinger-pisson system under the effect of the weight function, Discrete Contin. Dyn. Syst., 41 (2021), 3651-3682.
doi: 10.3934/dcds.2021011. |
[25] |
G. Tarantello,
On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 9 (1992), 281-304.
doi: 10.1016/S0294-1449(16)30238-4. |
[26] |
H. Ye,
The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in $\mathbb{R}^N$, J. Math. Anal. Appl., 431 (2015), 935-954.
doi: 10.1016/j.jmaa.2015.06.012. |
[27] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications I, Fixed–point Theorems, Springer, New York, 1986. |
[28] |
Z. T. Zhang and K. Perera,
Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.
doi: 10.1016/j.jmaa.2005.06.102. |
[29] |
Zhang, J., Sun, J., Wu, T. F., The number of positive solutions affected by the weight function to Kirchhoff type equations in high dimensions, Nonlinear Anal., 196 (2020), 111780, 24 pp.
doi: 10.1016/j.na.2020.111780. |
show all references
References:
[1] |
A. Arosio and S. Panizzi,
On the well–posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305-330.
doi: 10.1090/S0002-9947-96-01532-2. |
[2] |
T. Bartsch and T. Weth,
Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 259-281.
doi: 10.1016/j.anihpc.2004.07.005. |
[3] |
S. Bernstein,
Sur une class d'équations fonctionnelles aux dérivés partielles, Bull. Acad. Sci. URSS, Sr. Math., 4 (1940), 17-26.
|
[4] |
V. Benci and D. Fortunato,
An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.
doi: 10.12775/TMNA.1998.019. |
[5] |
H. Brezis and E. H. Lieb,
A relation between pointwise convergence of functions and convergence functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
doi: 10.2307/2044999. |
[6] |
G. Cerami and D. Passaseo,
The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differ. Equ., 17 (2003), 257-281.
doi: 10.1007/s00526-002-0169-6. |
[7] |
M. Clapp and T. Weth,
Minimal nodal solutions of the pure critical exponent problem on a symmetric doamin, Calc. Var. Partial Differ. Equ., 21 (2004), 1-14.
doi: 10.1007/s00526-003-0241-x. |
[8] |
Y. B. Deng, S. J. Peng and W. Shuai,
Existence and asymptotic behavior of nodal solutions for the Kirchhoff–type problems in $\mathbb{R}^3$, J. Funct. Anal., 269 (2015), 3500-3527.
doi: 10.1016/j.jfa.2015.09.012. |
[9] |
I. Ekeland,
On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.
doi: 10.1016/0022-247X(74)90025-0. |
[10] |
G. Figueiredo and R. Nascimento,
Existence of a nodal solution with minimal energy for a Kirchhoff equation, Math. Nachr., 288 (2015), 48-60.
doi: 10.1002/mana.201300195. |
[11] |
G. Figueiredo and J. Santos, Existence of a least energy nodal solution for a SchrÖdinger–Kirchhoff equation with potential vanishing at infinity, J. Math. Phys., 56 (2015), 051506, 18pp.
doi: 10.1063/1.4921639. |
[12] |
Y. He, G. Li and S. Peng,
Concentrating bound states for Kirchhoff type problems in $\mathbb{R}^3$ involving critical Sobolev exponents, Adv. Nonlinear Stud., 14 (2014), 483-510.
doi: 10.1515/ans-2014-0214. |
[13] |
T. Hu and L. Lu,
Multiplicity of positive solutions for Kirchhoff type problems in $\mathbb{R}^3$, Topol. Methods Nonlinear Anal., 50 (2017), 231-252.
doi: 10.12775/tmna.2017.028. |
[14] | |
[15] |
J. L. Lions, On some questions in boundary value problems of mathematical physics, in: Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977, in: North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, 1978,284–346. |
[16] |
P. L. Lions,
The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1 (1984), 223-283.
|
[17] |
Y. Li and W. M. Ni,
Radial symmetry of positive solutions of nonlinear ellitic equations in $\mathbb{R}^N$, Commun. Partial Differ. Equ., 18 (1993), 1043-1054.
doi: 10.1080/03605309308820960. |
[18] |
C. Liu, H. Wang and T. F. Wu,
Multiplicity of 2-nodal solutions for semilinear elliptic problems in $\mathbb{R}^N$, J. Math. Anal. Appl., 348 (2008), 169-179.
doi: 10.1016/j.jmaa.2008.06.042. |
[19] |
S. I. Pohozaev,
A certain class of quasilinear hyperbolic equations, Mat. Sb. (NS), 96 (1975), 152-168.
|
[20] |
W. Shuai,
Sign–changing solutions for a class of Kirchhoff–type problem in bounded domains, J. Differ. Equ., 259 (2015), 1256-1274.
doi: 10.1016/j.jde.2015.02.040. |
[21] |
J. T. Sun, T. F. Wu and Z. Feng,
Multiplicity of positive solutions for a nonlinear Schrödinger-Poisson system, J. Differ. Equ., 260 (2016), 586-627.
doi: 10.1016/j.jde.2015.09.002. |
[22] |
J. T. Sun and T. F. Wu, On the Kirchhoff type equations in $\mathbb{R}^N$, 2019, arXiv: 1908.01326. |
[23] |
J. T. Sun and T. F. Wu,
Bound state nodal solutions for the non-autonomous Schrödinger–Poisson system in $\mathbb{R}^3$, J. Differ. Equ., 268 (2020), 7121-7163.
doi: 10.1016/j.jde.2019.11.070. |
[24] |
J. T. Sun and T. F. Wu,
The number of nodal solutions for the schrödinger-pisson system under the effect of the weight function, Discrete Contin. Dyn. Syst., 41 (2021), 3651-3682.
doi: 10.3934/dcds.2021011. |
[25] |
G. Tarantello,
On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 9 (1992), 281-304.
doi: 10.1016/S0294-1449(16)30238-4. |
[26] |
H. Ye,
The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in $\mathbb{R}^N$, J. Math. Anal. Appl., 431 (2015), 935-954.
doi: 10.1016/j.jmaa.2015.06.012. |
[27] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications I, Fixed–point Theorems, Springer, New York, 1986. |
[28] |
Z. T. Zhang and K. Perera,
Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.
doi: 10.1016/j.jmaa.2005.06.102. |
[29] |
Zhang, J., Sun, J., Wu, T. F., The number of positive solutions affected by the weight function to Kirchhoff type equations in high dimensions, Nonlinear Anal., 196 (2020), 111780, 24 pp.
doi: 10.1016/j.na.2020.111780. |
[1] |
Xiao-Jing Zhong, Chun-Lei Tang. The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem. Communications on Pure and Applied Analysis, 2017, 16 (2) : 611-628. doi: 10.3934/cpaa.2017030 |
[2] |
Zhi-Guo Wu, Wen Guan, Da-Bin Wang. Multiple localized nodal solutions of high topological type for Kirchhoff-type equation with double potentials. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2495-2528. doi: 10.3934/cpaa.2022058 |
[3] |
Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111 |
[4] |
Wenjing Chen. Multiplicity of solutions for a fractional Kirchhoff type problem. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2009-2020. doi: 10.3934/cpaa.2015.14.2009 |
[5] |
Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773 |
[6] |
Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006 |
[7] |
Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883 |
[8] |
Alfonso Castro, Shu-Zhi Song. Infinitely many radial solutions for a super-cubic Kirchhoff type problem in a ball. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3347-3355. doi: 10.3934/dcdss.2020127 |
[9] |
Jacob Ashiwere Abuchu, Godwin Chidi Ugwunnadi, Ojen Kumar Narain. Inertial Mann-Type iterative method for solving split monotone variational inclusion problem with applications. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022075 |
[10] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure and Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292 |
[11] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Kirchhoff equation with pure critical growth nonlinearity. Electronic Research Archive, 2021, 29 (5) : 3281-3295. doi: 10.3934/era.2021038 |
[12] |
Xing Liu, Yijing Sun. Multiple positive solutions for Kirchhoff type problems with singularity. Communications on Pure and Applied Analysis, 2013, 12 (2) : 721-733. doi: 10.3934/cpaa.2013.12.721 |
[13] |
Zhongyuan Liu. Nodal Bubble-Tower Solutions for a semilinear elliptic problem with competing powers. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5299-5317. doi: 10.3934/dcds.2017230 |
[14] |
Nemat Nyamoradi, Kaimin Teng. Existence of solutions for a Kirchhoff-type-nonlocal operators of elliptic type. Communications on Pure and Applied Analysis, 2015, 14 (2) : 361-371. doi: 10.3934/cpaa.2015.14.361 |
[15] |
Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171 |
[16] |
Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027 |
[17] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5465-5494. doi: 10.3934/dcdsb.2020354 |
[18] |
Shu-Zhi Song, Shang-Jie Chen, Chun-Lei Tang. Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6453-6473. doi: 10.3934/dcds.2016078 |
[19] |
Norihisa Ikoma. Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 943-966. doi: 10.3934/dcds.2015.35.943 |
[20] |
To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]