Using a Lyapunov-Krasovskii functional, new results concerning the global stability, boundedness of solutions, existence and non-existence of $ T $-periodic solutions for a kind of delayed equation for a $ \varphi $-Laplacian operator are obtained. An application is given for the well known sunflower equation.
Citation: |
[1] |
P. Amster, Topological Methods in the Study of Boundary Value Problems, Springer-Verlag, New York, 2014.
doi: 10.1007/978-1-4614-8893-4.![]() ![]() ![]() |
[2] |
P. Amster, M. P. Kuna and D. P. Santos, Multiplicity of periodic solutions for dynamic liénard equations with delay and singular $\varphi$-laplacian of relativistic type, arXiv: 2005.12850.
![]() |
[3] |
T. A. Burton, Stability and Periodic Solution of Ordinary and Functional Differential Equations, Academic Press, Orland, FL, 1985.
![]() ![]() |
[4] |
T. A. Burton and L. Hatvani, Stability theorems for non autonomous functional differential equations by Lyapunov functionals, Tohoku Math. J., 41 (1989), 65-104.
doi: 10.2748/tmj/1178227868.![]() ![]() ![]() |
[5] |
J. A. Cid, On the existence of periodic oscillations for pendulum-type equations, Adv. Nonlinear Anal., 10 (2021), 121-130.
doi: 10.1515/anona-2020-0222.![]() ![]() ![]() |
[6] |
X. Huang and Z. Xiang, On existence of $2\pi$-periodic solutions for delay Duffing equation $x''+g(t, x(t-\tau(t)))=p(t)$, Chin. Sci. Bull., 39 (1994), 201-203.
![]() |
[7] |
X. Liu, M. Tang and R. Martin, Periodic solutions for a kind of Liénard equation, J. Comput. Appl. Math., 219 (2008), 263-275.
doi: 10.1016/j.cam.2007.07.024.![]() ![]() ![]() |
[8] |
S. Lu and W. Ge, Periodic solutions for a kind of second order differential equation with multiple deviating arguments, Appl. Math. Comput., 146 (2003), 195-209.
doi: 10.1016/S0096-3003(02)00536-2.![]() ![]() ![]() |
[9] |
S. Lu and W. Ge, Sufficient conditions for the existence of periodic solutions to some second order differential equations with a deviating argument, Appl. Math. Comput., 308 (2005), 393-419.
doi: 10.1016/j.jmaa.2004.09.010.![]() ![]() ![]() |
[10] |
N. N. Krasovskii, Stability of Motion, Stanford University Press, 1963.
![]() |
[11] |
J. Mawhin, Degré topologique et solutions périodiques des systèmes différentiels non linéaires, Bull. Sot. Roy. Sci. Liège, 38 (1969), 308-398.
![]() ![]() |
[12] |
R. Ortega, A counterexample for the damped pendulum equation, Acad. Roy. Belg. Bull. Cl. Sci., 73 (1987), 405-409.
![]() ![]() |
[13] |
A. Somolinos and A. Casal, Forced Oscillations for the Sunflower Equation, Entrainment, Nonlinear Anal. Theory. Methods Appl., 4 (1982), 397-414.
doi: 10.1016/0362-546X(82)90025-6.![]() ![]() ![]() |
[14] |
A. Somolinos, Periodic solutions of the sunflower equation: $\ddot x + (a/r) \dot x + (b/r)\sin x(t-r) =0$, Q. Appl. Math., 35 (1978), 465-478.
doi: 10.1090/qam/465265.![]() ![]() ![]() |
[15] |
J. M. Zhao, K. L. Huang and Q. S. Lu, The existence of periodic solutions for a class of functional-differential equations and their application, Appl. Math. Mech., 15 (1994), 49-58.
doi: 10.1007/BF02451981.![]() ![]() ![]() |