\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Sharp subcritical Sobolev inequalities and uniqueness of nonnegative solutions to high-order Lane-Emden equations on $ \mathbb{S}^n $

  • * Corresponding author

    * Corresponding author

The first author was partly supported by NSFC (No.11901031). The second author was partly supported by a grant from the Simons Foundation

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we are concerned with the uniqueness result for non-negative solutions of the higher-order Lane-Emden equations involving the GJMS operators on $ \mathbb{S}^n $. Since the classical moving-plane method based on the Kelvin transform and maximum principle fails in dealing with the high-order elliptic equations in $ \mathbb{S}^n $, we first employ the Mobius transform between $ \mathbb{S}^n $ and $ \mathbb{R}^n $, poly-harmonic average and iteration arguments to show that the higher-order Lane-Emden equation on $ \mathbb{S}^n $ is equivalent to some integral equation in $ \mathbb{R}^n $. Then we apply the method of moving plane in integral forms and the symmetry of sphere to obtain the uniqueness of nonnegative solutions to the higher-order Lane-Emden equations with subcritical polynomial growth on $ \mathbb{S}^n $. As an application, we also identify the best constants and classify the extremals of the sharp subcritical high-order Sobolev inequalities involving the GJMS operators on $ \mathbb{S}^n $. Our results do not seem to be in the literature even for the Lane-Emden equation and sharp subcritical Sobolev inequalities for first order derivatives on $ \mathbb{S}^n $.

    Mathematics Subject Classification: 5J30, 46E35, 35B06, 35A02.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] T. Aubin, Équations différentielles non linéaires et probléme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., 55 (1976), 269-296. 
    [2] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11 (1976), 573-598.  doi: 10.4310/jdg/1214433725.
    [3] T. Aubin, Espaces de Sobolev sur les variétés riemanniennes, Bull. Sci. Math., 100 (1976), 149-173. 
    [4] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. Math., 138 (1993), 213-242.  doi: 10.2307/2946638.
    [5] T. P. Branson, Differential operators canonically associated to a conformal structure, Math. Scand., 57 (1985), 293-345.  doi: 10.7146/math.scand.a-12120.
    [6] T. P. Branson, Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc., 347 (1995), 3671-3742.  doi: 10.7146/math.scand.a-12120.
    [7] S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover Publications, Inc., New York, 1957.
    [8] L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equation with critical Sobolev growth, Commun. Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.
    [9] L. ChenZ. LiuG. Lu and C. Tao, Stein-Weiss inequalities with the fractional Poisson kernel, Rev. Mat. Iberoam., 36 (2020), 1289-1308.  doi: 10.4171/rmi/1167.
    [10] L. ChenZ. LiuG. Lu and C. Tao, Reverse Stein-Weiss inequalities and existence of their extremal functions, Trans. Amer. Math. Soc., 370 (2018), 8429-8450.  doi: 10.1090/tran/7273.
    [11] L. ChenG. Lu and C. Tao, Reverse Stein-Weiss inequalities on the upper half space and the existence of their extremals, Adv. Nonlinear Stud., 19 (2019), 475-494.  doi: 10.1515/ans-2018-2038.
    [12] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.
    [13] W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.
    [14] A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236.  doi: 10.1016/j.jmaa.2004.03.034.
    [15] Z. DjadliE. Hebey and M. Ledoux, Paneitz type operators and applications, Duke Math. J., 104 (2000), 129-169.  doi: 10.1215/S0012-7094-00-10416-4.
    [16] C. Fefferman and C. R. Graham, Juhl's formulae for GJMS operators and Q-curvatures, J. Amer. Math. Soc., 26 (2013), 1191-1207.  doi: 10.1090/S0894-0347-2013-00765-1.
    [17] C. Fefferman and  C. R. GrahamThe Ambient Metric, Princeton University Press, 2012. 
    [18] F. Gazzola, H. C. Grunau and G. Sweers, Polyharmonic boundary value problems, in Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010.
    [19] A. R. Gover and K. Hirachi, Conformally invariant powers of the Laplacian-a complete nonexistence theorem, J. Amer. Math. Soc., 17 (2004), 389-405.  doi: 10.1090/S0894-0347-04-00450-3.
    [20] C. R. Graham, Conformally invariant powers of the Laplacian, Ⅱ: nonexistence, J. London Math. Soc., 46 (1992), 566-576.  doi: 10.1112/jlms/s2-46.3.566.
    [21] C. GrahamR. JenneL. Mason and J. Sparling, Conformally invariant powers of the Laplacian. Ⅰ. Existence, J. London Math. Soc., 46 (1992), 557-565.  doi: 10.1112/jlms/s2-46.3.557.
    [22] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, in Mathematical Analysis and Applications, Supplementary Studies, Academic Press, New York, 1981.
    [23] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear ellipti equations, Commun. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.
    [24] F. Hang, On the higher order conformal covariant operators on the sphere, Commun. Contemp. Math., 9 (2007), 279-299.  doi: 10.1142/S0219199707002435.
    [25] F. HangX. Wang and X. Yan, An intergal equation in conformal geometry, Ann. Inst. H. Poincare Anal. Non Lineare., 26 (2009), 1-21.  doi: 10.1016/J.ANIHPC.2007.03.006.
    [26] A. Juhl, Explicit formulas for GJMS-operators and Q-curvatures, Geom. Funct. Anal., 23 (2013), 1278-1370.  doi: 10.1007/s00039-013-0232-9.
    [27] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374.  doi: 10.2307/2007032.
    [28] P. Lions, The concentration compactness principle in the calculus of variations. The limit case 1, Rev. Mat. Iberoam., 1 (1985), 145-201.  doi: 10.4171/RMI/6.
    [29] C. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$, Comment. Math. Helv., 73 (1998), 206-231.  doi: 10.1007/s000140050052.
    [30] G. LuJ. Wei and X. Xu, On conformally invariant equation $(-\Delta)^pu-K(x)u^{\frac{N+2p}{N-2p}} = 0$ and its generalizations, Ann. Mat. Pura Appl., 179 (2001), 309-329.  doi: 10.1007/BF02505961.
    [31] S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannianmanifolds, Symmetry Integr. Geom. Methods Appl., 4 (2008), 3 pp. doi: 10.3842/SIGMA.2008.036.
    [32] C. A. Swanson, The best Sobolev constant, Appl. Anal., 47 (1992), 227-239.  doi: 10.1080/00036819208840142.
    [33] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin/Heidelberg, 1990.
    [34] E. Stein, Singular Integrals and Differentiablity Properties of Functions, Prineton Mathematical Series, Princeton University Press, Princeton, N.J. 1970.
    [35] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.  doi: 10.1007/BF02418013.
    [36] C. Tao, Reversed Stein-Weiss inequalities with Poisson-type kernel and qualitative analysis of extremal functions, Adv. Nonlinear Stud., 21 (2021), 167-187.  doi: 10.1515/ans-2020-2112.
    [37] R. C. A. M. Van der Vorst, Best constant for the embedding of the space $H^2\cap H^1_0(\Omega)$ into ${L^{\frac{{2N}}{{N - 4}}}}(\Omega )$, Differ. Integral Equ., 6 (1993), 259-276. 
    [38] X. J. Wang, Sharp constant in a Sobolev inequality, Nonlinear Anal., 20 (1993), 261-268.  doi: 10.1016/0362-546X(93)90162-L.
    [39] J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.  doi: 10.1007/s002080050258.
  • 加载中
SHARE

Article Metrics

HTML views(472) PDF downloads(179) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return