In this paper, we are concerned with the uniqueness result for non-negative solutions of the higher-order Lane-Emden equations involving the GJMS operators on $ \mathbb{S}^n $. Since the classical moving-plane method based on the Kelvin transform and maximum principle fails in dealing with the high-order elliptic equations in $ \mathbb{S}^n $, we first employ the Mobius transform between $ \mathbb{S}^n $ and $ \mathbb{R}^n $, poly-harmonic average and iteration arguments to show that the higher-order Lane-Emden equation on $ \mathbb{S}^n $ is equivalent to some integral equation in $ \mathbb{R}^n $. Then we apply the method of moving plane in integral forms and the symmetry of sphere to obtain the uniqueness of nonnegative solutions to the higher-order Lane-Emden equations with subcritical polynomial growth on $ \mathbb{S}^n $. As an application, we also identify the best constants and classify the extremals of the sharp subcritical high-order Sobolev inequalities involving the GJMS operators on $ \mathbb{S}^n $. Our results do not seem to be in the literature even for the Lane-Emden equation and sharp subcritical Sobolev inequalities for first order derivatives on $ \mathbb{S}^n $.
Citation: |
[1] |
T. Aubin, Équations différentielles non linéaires et probléme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., 55 (1976), 269-296.
![]() ![]() |
[2] |
T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11 (1976), 573-598.
doi: 10.4310/jdg/1214433725.![]() ![]() ![]() |
[3] |
T. Aubin, Espaces de Sobolev sur les variétés riemanniennes, Bull. Sci. Math., 100 (1976), 149-173.
![]() ![]() |
[4] |
W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. Math., 138 (1993), 213-242.
doi: 10.2307/2946638.![]() ![]() ![]() |
[5] |
T. P. Branson, Differential operators canonically associated to a conformal structure, Math. Scand., 57 (1985), 293-345.
doi: 10.7146/math.scand.a-12120.![]() ![]() ![]() |
[6] |
T. P. Branson, Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc., 347 (1995), 3671-3742.
doi: 10.7146/math.scand.a-12120.![]() ![]() ![]() |
[7] |
S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover Publications, Inc., New York, 1957.
![]() ![]() |
[8] |
L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equation with critical Sobolev growth, Commun. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304.![]() ![]() ![]() |
[9] |
L. Chen, Z. Liu, G. Lu and C. Tao, Stein-Weiss inequalities with the fractional Poisson kernel, Rev. Mat. Iberoam., 36 (2020), 1289-1308.
doi: 10.4171/rmi/1167.![]() ![]() ![]() |
[10] |
L. Chen, Z. Liu, G. Lu and C. Tao, Reverse Stein-Weiss inequalities and existence of their extremal functions, Trans. Amer. Math. Soc., 370 (2018), 8429-8450.
doi: 10.1090/tran/7273.![]() ![]() ![]() |
[11] |
L. Chen, G. Lu and C. Tao, Reverse Stein-Weiss inequalities on the upper half space and the existence of their extremals, Adv. Nonlinear Stud., 19 (2019), 475-494.
doi: 10.1515/ans-2018-2038.![]() ![]() ![]() |
[12] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8.![]() ![]() ![]() |
[13] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[14] |
A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236.
doi: 10.1016/j.jmaa.2004.03.034.![]() ![]() ![]() |
[15] |
Z. Djadli, E. Hebey and M. Ledoux, Paneitz type operators and applications, Duke Math. J., 104 (2000), 129-169.
doi: 10.1215/S0012-7094-00-10416-4.![]() ![]() ![]() |
[16] |
C. Fefferman and C. R. Graham, Juhl's formulae for GJMS operators and Q-curvatures, J. Amer. Math. Soc., 26 (2013), 1191-1207.
doi: 10.1090/S0894-0347-2013-00765-1.![]() ![]() ![]() |
[17] |
C. Fefferman and C. R. Graham, The Ambient Metric, Princeton University Press, 2012.
![]() ![]() |
[18] |
F. Gazzola, H. C. Grunau and G. Sweers, Polyharmonic boundary value problems, in Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010.
![]() ![]() |
[19] |
A. R. Gover and K. Hirachi, Conformally invariant powers of the Laplacian-a complete nonexistence theorem, J. Amer. Math. Soc., 17 (2004), 389-405.
doi: 10.1090/S0894-0347-04-00450-3.![]() ![]() ![]() |
[20] |
C. R. Graham, Conformally invariant powers of the Laplacian, Ⅱ: nonexistence, J. London Math. Soc., 46 (1992), 566-576.
doi: 10.1112/jlms/s2-46.3.566.![]() ![]() ![]() |
[21] |
C. Graham, R. Jenne, L. Mason and J. Sparling, Conformally invariant powers of the Laplacian. Ⅰ. Existence, J. London Math. Soc., 46 (1992), 557-565.
doi: 10.1112/jlms/s2-46.3.557.![]() ![]() ![]() |
[22] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, in Mathematical Analysis and Applications, Supplementary Studies, Academic Press, New York, 1981.
![]() ![]() |
[23] |
B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear ellipti equations, Commun. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406.![]() ![]() ![]() |
[24] |
F. Hang, On the higher order conformal covariant operators on the sphere, Commun. Contemp. Math., 9 (2007), 279-299.
doi: 10.1142/S0219199707002435.![]() ![]() ![]() |
[25] |
F. Hang, X. Wang and X. Yan, An intergal equation in conformal geometry, Ann. Inst. H. Poincare Anal. Non Lineare., 26 (2009), 1-21.
doi: 10.1016/J.ANIHPC.2007.03.006.![]() ![]() ![]() |
[26] |
A. Juhl, Explicit formulas for GJMS-operators and Q-curvatures, Geom. Funct. Anal., 23 (2013), 1278-1370.
doi: 10.1007/s00039-013-0232-9.![]() ![]() ![]() |
[27] |
E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374.
doi: 10.2307/2007032.![]() ![]() ![]() |
[28] |
P. Lions, The concentration compactness principle in the calculus of variations. The limit case 1, Rev. Mat. Iberoam., 1 (1985), 145-201.
doi: 10.4171/RMI/6.![]() ![]() ![]() |
[29] |
C. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$, Comment. Math. Helv., 73 (1998), 206-231.
doi: 10.1007/s000140050052.![]() ![]() ![]() |
[30] |
G. Lu, J. Wei and X. Xu, On conformally invariant equation $(-\Delta)^pu-K(x)u^{\frac{N+2p}{N-2p}} = 0$ and its generalizations, Ann. Mat. Pura Appl., 179 (2001), 309-329.
doi: 10.1007/BF02505961.![]() ![]() ![]() |
[31] |
S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannianmanifolds, Symmetry Integr. Geom. Methods Appl., 4 (2008), 3 pp.
doi: 10.3842/SIGMA.2008.036.![]() ![]() ![]() |
[32] |
C. A. Swanson, The best Sobolev constant, Appl. Anal., 47 (1992), 227-239.
doi: 10.1080/00036819208840142.![]() ![]() ![]() |
[33] |
M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin/Heidelberg, 1990.
![]() ![]() |
[34] |
E. Stein, Singular Integrals and Differentiablity Properties of Functions, Prineton Mathematical Series, Princeton University Press, Princeton, N.J. 1970.
![]() ![]() |
[35] |
G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.
doi: 10.1007/BF02418013.![]() ![]() ![]() |
[36] |
C. Tao, Reversed Stein-Weiss inequalities with Poisson-type kernel and qualitative analysis of extremal functions, Adv. Nonlinear Stud., 21 (2021), 167-187.
doi: 10.1515/ans-2020-2112.![]() ![]() ![]() |
[37] |
R. C. A. M. Van der Vorst, Best constant for the embedding of the space $H^2\cap H^1_0(\Omega)$ into ${L^{\frac{{2N}}{{N - 4}}}}(\Omega )$, Differ. Integral Equ., 6 (1993), 259-276.
![]() ![]() |
[38] |
X. J. Wang, Sharp constant in a Sobolev inequality, Nonlinear Anal., 20 (1993), 261-268.
doi: 10.1016/0362-546X(93)90162-L.![]() ![]() ![]() |
[39] |
J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.
doi: 10.1007/s002080050258.![]() ![]() ![]() |