-
Previous Article
Minimisers of Helfrich functional for surfaces of revolution
- CPAA Home
- This Issue
-
Next Article
Global Carleman estimate and its applications for a sixth-order equation related to thin solid films
Sharp subcritical Sobolev inequalities and uniqueness of nonnegative solutions to high-order Lane-Emden equations on $ \mathbb{S}^n $
1. | School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China |
2. | Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA |
3. | School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China |
In this paper, we are concerned with the uniqueness result for non-negative solutions of the higher-order Lane-Emden equations involving the GJMS operators on $ \mathbb{S}^n $. Since the classical moving-plane method based on the Kelvin transform and maximum principle fails in dealing with the high-order elliptic equations in $ \mathbb{S}^n $, we first employ the Mobius transform between $ \mathbb{S}^n $ and $ \mathbb{R}^n $, poly-harmonic average and iteration arguments to show that the higher-order Lane-Emden equation on $ \mathbb{S}^n $ is equivalent to some integral equation in $ \mathbb{R}^n $. Then we apply the method of moving plane in integral forms and the symmetry of sphere to obtain the uniqueness of nonnegative solutions to the higher-order Lane-Emden equations with subcritical polynomial growth on $ \mathbb{S}^n $. As an application, we also identify the best constants and classify the extremals of the sharp subcritical high-order Sobolev inequalities involving the GJMS operators on $ \mathbb{S}^n $. Our results do not seem to be in the literature even for the Lane-Emden equation and sharp subcritical Sobolev inequalities for first order derivatives on $ \mathbb{S}^n $.
References:
[1] |
T. Aubin,
Équations différentielles non linéaires et probléme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., 55 (1976), 269-296.
|
[2] |
T. Aubin,
Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11 (1976), 573-598.
doi: 10.4310/jdg/1214433725. |
[3] |
T. Aubin,
Espaces de Sobolev sur les variétés riemanniennes, Bull. Sci. Math., 100 (1976), 149-173.
|
[4] |
W. Beckner,
Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. Math., 138 (1993), 213-242.
doi: 10.2307/2946638. |
[5] |
T. P. Branson,
Differential operators canonically associated to a conformal structure, Math. Scand., 57 (1985), 293-345.
doi: 10.7146/math.scand.a-12120. |
[6] |
T. P. Branson,
Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc., 347 (1995), 3671-3742.
doi: 10.7146/math.scand.a-12120. |
[7] |
S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover Publications, Inc., New York, 1957. |
[8] |
L. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behavior of semilinear elliptic equation with critical Sobolev growth, Commun. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[9] |
L. Chen, Z. Liu, G. Lu and C. Tao,
Stein-Weiss inequalities with the fractional Poisson kernel, Rev. Mat. Iberoam., 36 (2020), 1289-1308.
doi: 10.4171/rmi/1167. |
[10] |
L. Chen, Z. Liu, G. Lu and C. Tao,
Reverse Stein-Weiss inequalities and existence of their extremal functions, Trans. Amer. Math. Soc., 370 (2018), 8429-8450.
doi: 10.1090/tran/7273. |
[11] |
L. Chen, G. Lu and C. Tao,
Reverse Stein-Weiss inequalities on the upper half space and the existence of their extremals, Adv. Nonlinear Stud., 19 (2019), 475-494.
doi: 10.1515/ans-2018-2038. |
[12] |
W. Chen and C. Li,
Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[13] |
W. Chen, C. Li and B. Ou,
Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[14] |
A. Cotsiolis and N. Tavoularis,
Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236.
doi: 10.1016/j.jmaa.2004.03.034. |
[15] |
Z. Djadli, E. Hebey and M. Ledoux,
Paneitz type operators and applications, Duke Math. J., 104 (2000), 129-169.
doi: 10.1215/S0012-7094-00-10416-4. |
[16] |
C. Fefferman and C. R. Graham,
Juhl's formulae for GJMS operators and Q-curvatures, J. Amer. Math. Soc., 26 (2013), 1191-1207.
doi: 10.1090/S0894-0347-2013-00765-1. |
[17] |
C. Fefferman and C. R. Graham, The Ambient Metric, Princeton University Press, 2012.
![]() ![]() |
[18] |
F. Gazzola, H. C. Grunau and G. Sweers, Polyharmonic boundary value problems, in Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. |
[19] |
A. R. Gover and K. Hirachi,
Conformally invariant powers of the Laplacian-a complete nonexistence theorem, J. Amer. Math. Soc., 17 (2004), 389-405.
doi: 10.1090/S0894-0347-04-00450-3. |
[20] |
C. R. Graham,
Conformally invariant powers of the Laplacian, Ⅱ: nonexistence, J. London Math. Soc., 46 (1992), 566-576.
doi: 10.1112/jlms/s2-46.3.566. |
[21] |
C. Graham, R. Jenne, L. Mason and J. Sparling,
Conformally invariant powers of the Laplacian. Ⅰ. Existence, J. London Math. Soc., 46 (1992), 557-565.
doi: 10.1112/jlms/s2-46.3.557. |
[22] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, in Mathematical Analysis and Applications, Supplementary Studies, Academic Press, New York, 1981. |
[23] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear ellipti equations, Commun. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[24] |
F. Hang,
On the higher order conformal covariant operators on the sphere, Commun. Contemp. Math., 9 (2007), 279-299.
doi: 10.1142/S0219199707002435. |
[25] |
F. Hang, X. Wang and X. Yan,
An intergal equation in conformal geometry, Ann. Inst. H. Poincare Anal. Non Lineare., 26 (2009), 1-21.
doi: 10.1016/J.ANIHPC.2007.03.006. |
[26] |
A. Juhl,
Explicit formulas for GJMS-operators and Q-curvatures, Geom. Funct. Anal., 23 (2013), 1278-1370.
doi: 10.1007/s00039-013-0232-9. |
[27] |
E. H. Lieb,
Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374.
doi: 10.2307/2007032. |
[28] |
P. Lions,
The concentration compactness principle in the calculus of variations. The limit case 1, Rev. Mat. Iberoam., 1 (1985), 145-201.
doi: 10.4171/RMI/6. |
[29] |
C. Lin,
A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$, Comment. Math. Helv., 73 (1998), 206-231.
doi: 10.1007/s000140050052. |
[30] |
G. Lu, J. Wei and X. Xu,
On conformally invariant equation $(-\Delta)^pu-K(x)u^{\frac{N+2p}{N-2p}} = 0$ and its generalizations, Ann. Mat. Pura Appl., 179 (2001), 309-329.
doi: 10.1007/BF02505961. |
[31] |
S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannianmanifolds, Symmetry Integr. Geom. Methods Appl., 4 (2008), 3 pp.
doi: 10.3842/SIGMA.2008.036. |
[32] |
C. A. Swanson,
The best Sobolev constant, Appl. Anal., 47 (1992), 227-239.
doi: 10.1080/00036819208840142. |
[33] |
M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin/Heidelberg, 1990. |
[34] |
E. Stein, Singular Integrals and Differentiablity Properties of Functions, Prineton Mathematical Series, Princeton University Press, Princeton, N.J. 1970. |
[35] |
G. Talenti,
Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.
doi: 10.1007/BF02418013. |
[36] |
C. Tao,
Reversed Stein-Weiss inequalities with Poisson-type kernel and qualitative analysis of extremal functions, Adv. Nonlinear Stud., 21 (2021), 167-187.
doi: 10.1515/ans-2020-2112. |
[37] |
R. C. A. M. Van der Vorst,
Best constant for the embedding of the space $H^2\cap H^1_0(\Omega)$ into ${L^{\frac{{2N}}{{N - 4}}}}(\Omega )$, Differ. Integral Equ., 6 (1993), 259-276.
|
[38] |
X. J. Wang,
Sharp constant in a Sobolev inequality, Nonlinear Anal., 20 (1993), 261-268.
doi: 10.1016/0362-546X(93)90162-L. |
[39] |
J. Wei and X. Xu,
Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.
doi: 10.1007/s002080050258. |
show all references
References:
[1] |
T. Aubin,
Équations différentielles non linéaires et probléme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., 55 (1976), 269-296.
|
[2] |
T. Aubin,
Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., 11 (1976), 573-598.
doi: 10.4310/jdg/1214433725. |
[3] |
T. Aubin,
Espaces de Sobolev sur les variétés riemanniennes, Bull. Sci. Math., 100 (1976), 149-173.
|
[4] |
W. Beckner,
Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. Math., 138 (1993), 213-242.
doi: 10.2307/2946638. |
[5] |
T. P. Branson,
Differential operators canonically associated to a conformal structure, Math. Scand., 57 (1985), 293-345.
doi: 10.7146/math.scand.a-12120. |
[6] |
T. P. Branson,
Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc., 347 (1995), 3671-3742.
doi: 10.7146/math.scand.a-12120. |
[7] |
S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover Publications, Inc., New York, 1957. |
[8] |
L. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behavior of semilinear elliptic equation with critical Sobolev growth, Commun. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[9] |
L. Chen, Z. Liu, G. Lu and C. Tao,
Stein-Weiss inequalities with the fractional Poisson kernel, Rev. Mat. Iberoam., 36 (2020), 1289-1308.
doi: 10.4171/rmi/1167. |
[10] |
L. Chen, Z. Liu, G. Lu and C. Tao,
Reverse Stein-Weiss inequalities and existence of their extremal functions, Trans. Amer. Math. Soc., 370 (2018), 8429-8450.
doi: 10.1090/tran/7273. |
[11] |
L. Chen, G. Lu and C. Tao,
Reverse Stein-Weiss inequalities on the upper half space and the existence of their extremals, Adv. Nonlinear Stud., 19 (2019), 475-494.
doi: 10.1515/ans-2018-2038. |
[12] |
W. Chen and C. Li,
Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[13] |
W. Chen, C. Li and B. Ou,
Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[14] |
A. Cotsiolis and N. Tavoularis,
Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236.
doi: 10.1016/j.jmaa.2004.03.034. |
[15] |
Z. Djadli, E. Hebey and M. Ledoux,
Paneitz type operators and applications, Duke Math. J., 104 (2000), 129-169.
doi: 10.1215/S0012-7094-00-10416-4. |
[16] |
C. Fefferman and C. R. Graham,
Juhl's formulae for GJMS operators and Q-curvatures, J. Amer. Math. Soc., 26 (2013), 1191-1207.
doi: 10.1090/S0894-0347-2013-00765-1. |
[17] |
C. Fefferman and C. R. Graham, The Ambient Metric, Princeton University Press, 2012.
![]() ![]() |
[18] |
F. Gazzola, H. C. Grunau and G. Sweers, Polyharmonic boundary value problems, in Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. |
[19] |
A. R. Gover and K. Hirachi,
Conformally invariant powers of the Laplacian-a complete nonexistence theorem, J. Amer. Math. Soc., 17 (2004), 389-405.
doi: 10.1090/S0894-0347-04-00450-3. |
[20] |
C. R. Graham,
Conformally invariant powers of the Laplacian, Ⅱ: nonexistence, J. London Math. Soc., 46 (1992), 566-576.
doi: 10.1112/jlms/s2-46.3.566. |
[21] |
C. Graham, R. Jenne, L. Mason and J. Sparling,
Conformally invariant powers of the Laplacian. Ⅰ. Existence, J. London Math. Soc., 46 (1992), 557-565.
doi: 10.1112/jlms/s2-46.3.557. |
[22] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, in Mathematical Analysis and Applications, Supplementary Studies, Academic Press, New York, 1981. |
[23] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear ellipti equations, Commun. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[24] |
F. Hang,
On the higher order conformal covariant operators on the sphere, Commun. Contemp. Math., 9 (2007), 279-299.
doi: 10.1142/S0219199707002435. |
[25] |
F. Hang, X. Wang and X. Yan,
An intergal equation in conformal geometry, Ann. Inst. H. Poincare Anal. Non Lineare., 26 (2009), 1-21.
doi: 10.1016/J.ANIHPC.2007.03.006. |
[26] |
A. Juhl,
Explicit formulas for GJMS-operators and Q-curvatures, Geom. Funct. Anal., 23 (2013), 1278-1370.
doi: 10.1007/s00039-013-0232-9. |
[27] |
E. H. Lieb,
Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374.
doi: 10.2307/2007032. |
[28] |
P. Lions,
The concentration compactness principle in the calculus of variations. The limit case 1, Rev. Mat. Iberoam., 1 (1985), 145-201.
doi: 10.4171/RMI/6. |
[29] |
C. Lin,
A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^n$, Comment. Math. Helv., 73 (1998), 206-231.
doi: 10.1007/s000140050052. |
[30] |
G. Lu, J. Wei and X. Xu,
On conformally invariant equation $(-\Delta)^pu-K(x)u^{\frac{N+2p}{N-2p}} = 0$ and its generalizations, Ann. Mat. Pura Appl., 179 (2001), 309-329.
doi: 10.1007/BF02505961. |
[31] |
S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannianmanifolds, Symmetry Integr. Geom. Methods Appl., 4 (2008), 3 pp.
doi: 10.3842/SIGMA.2008.036. |
[32] |
C. A. Swanson,
The best Sobolev constant, Appl. Anal., 47 (1992), 227-239.
doi: 10.1080/00036819208840142. |
[33] |
M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin/Heidelberg, 1990. |
[34] |
E. Stein, Singular Integrals and Differentiablity Properties of Functions, Prineton Mathematical Series, Princeton University Press, Princeton, N.J. 1970. |
[35] |
G. Talenti,
Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.
doi: 10.1007/BF02418013. |
[36] |
C. Tao,
Reversed Stein-Weiss inequalities with Poisson-type kernel and qualitative analysis of extremal functions, Adv. Nonlinear Stud., 21 (2021), 167-187.
doi: 10.1515/ans-2020-2112. |
[37] |
R. C. A. M. Van der Vorst,
Best constant for the embedding of the space $H^2\cap H^1_0(\Omega)$ into ${L^{\frac{{2N}}{{N - 4}}}}(\Omega )$, Differ. Integral Equ., 6 (1993), 259-276.
|
[38] |
X. J. Wang,
Sharp constant in a Sobolev inequality, Nonlinear Anal., 20 (1993), 261-268.
doi: 10.1016/0362-546X(93)90162-L. |
[39] |
J. Wei and X. Xu,
Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.
doi: 10.1007/s002080050258. |
[1] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[2] |
Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1681-1698. doi: 10.3934/cpaa.2021036 |
[3] |
Naoki Shioji, Kohtaro Watanabe. Uniqueness of positive radial solutions of the Brezis-Nirenberg problem on thin annular domains on $ {\mathbb S}^n $ and symmetry breaking bifurcations. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4727-4770. doi: 10.3934/cpaa.2020210 |
[4] |
Fengshuang Gao, Yuxia Guo. Infinitely many solutions for quasilinear equations with critical exponent and Hardy potential in $ \mathbb{R}^N $. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5591-5616. doi: 10.3934/dcds.2020239 |
[5] |
Ziqing Yuan, Jianshe Yu. Existence and multiplicity of positive solutions for a class of quasilinear Schrödinger equations in $ \mathbb R^N $$ ^\diamondsuit $. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3285-3303. doi: 10.3934/dcdss.2020281 |
[6] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[7] |
Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure and Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033 |
[8] |
Genni Fragnelli, Jerome A. Goldstein, Rosa Maria Mininni, Silvia Romanelli. Operators of order 2$ n $ with interior degeneracy. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3417-3426. doi: 10.3934/dcdss.2020128 |
[9] |
Yaotian Shen, Youjun Wang. Degenerate coercive quasilinear elliptic equations with subcritical or critical exponents in $ \mathbb{R}^N $. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4667-4697. doi: 10.3934/cpaa.2020197 |
[10] |
Juntao Sun, Tsung-fang Wu. The effect of nonlocal term on the superlinear elliptic equations in $ \mathbb{R}^{N} $. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3217-3242. doi: 10.3934/cpaa.2019145 |
[11] |
Laura Baldelli, Roberta Filippucci. Singular quasilinear critical Schrödinger equations in $ \mathbb {R}^N $. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2561-2586. doi: 10.3934/cpaa.2022060 |
[12] |
Yongkuan Cheng, Yaotian Shen. Generalized quasilinear Schrödinger equations with concave functions $ l(s^2) $. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1311-1343. doi: 10.3934/dcds.2019056 |
[13] |
Rong Zhang. Nonexistence of Positive Solutions for high-order Hardy-H$ \acute{e} $non Systems on $ \mathbb{R}^{n} $. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2857-2872. doi: 10.3934/cpaa.2022078 |
[14] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure and Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[15] |
Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228 |
[16] |
Christophe Dupont, Axel Rogue. On the regularity of the Green current for semi-extremal endomorphisms of $ \mathbb{P}^2 $. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6767-6781. doi: 10.3934/dcds.2020163 |
[17] |
Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009 |
[18] |
Yanheng Ding, Xiaojing Dong, Qi Guo. On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension $ n $. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4105-4123. doi: 10.3934/dcds.2021030 |
[19] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations and Control Theory, 2022, 11 (2) : 415-437. doi: 10.3934/eect.2021006 |
[20] |
Mei Yu, Xia Zhang, Binlin Zhang. Property of solutions for elliptic equation involving the higher-order fractional Laplacian in $ \mathbb{R}^n_+ $. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3597-3612. doi: 10.3934/cpaa.2020157 |
2021 Impact Factor: 1.273
Tools
Article outline
[Back to Top]