In this paper we investigate the existence and the properties for the minimisers of a special Helfrich functional for surfaces of revolution with Dirichlet boundary value conditions. Removing the even restriction for the admissible functions in [
Citation: |
[1] |
K. Brazda, L. Lussardi and U. Stefanelli, Existence of varifold minimizers for the multiphase Canham-Helfrich functional, Calc Var. Partial Differ. Equ., 59 (2020), 26 pp.
doi: 10.1007/s00526-020-01759-9.![]() ![]() ![]() |
[2] |
P. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theor. Biol., 26 (1970), 26-61.
![]() |
[3] |
R. Choksi, M. Morandotti and M. Veneroni, Global minimizers for axisymmetric multiphase membranes, ESAIM, Control, Optimi. Calc. Var., 19 (1970), 1014-1029.
doi: 10.1051/cocv/2012042.![]() ![]() ![]() |
[4] |
R. Choksi and M. Veneroni, Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case, Calc. Var. Partial Differ. Equ., 48 (2013), 337-366.
doi: 10.1007/s00526-012-0553-9.![]() ![]() ![]() |
[5] |
K. Deckelnick, M. Doemeland and H. Grunau, Boundary value problems for a special Helfrich functional for surfaces of revolution: existence and asymptotic behaviour, Calc. Var. Partial Differ. Equ., 60 (2021), 31 pp.
doi: 10.1007/s00526-020-01875-6.![]() ![]() ![]() |
[6] |
K. Deckelnick, H. Grunau and M. Roger, Minimising a relaxed Willmore functional for graphs subject to boundary conditions, Interf. Free Bound., 19 (2017), 109-140.
doi: 10.4171/IFB/378.![]() ![]() ![]() |
[7] |
S. Eichmann and H. Grunau, Existence for Willmore surfaces of revolution satisfying non-symmetric Dirichlet boundary conditions, Adv. Calc. Var., 12 (2019), 333-361.
doi: 10.1515/acv-2016-0038.![]() ![]() ![]() |
[8] |
S. Eichmann and A. Koeller, Symmetry for Willmore Surfaces of Revolution, J. Geom. Anal., 27 (2016), 1-25.
![]() |
[9] |
H. Frieske and M. Mahnig, Elastic properties of lipid bilayers: theory and possible experiments, Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences, 28 (1973), 693-703.
![]() |
[10] |
M. Giaquinta and S. Hildebrandt, Calculus of Variations I, Oxford University Press, 1996.
![]() ![]() |
[11] |
H. Jian and H. Zeng, Existence and uniqueness for variational problem from progressive lens design, Front. Math. China, 15 (2020), 491-505.
doi: 10.1007/s11464-020-0845-x.![]() ![]() ![]() |
[12] |
E. Kuwert and R. Schatzle, Closed surfaces with bounds on their Willmore energy, Ann. Della Scuola Norm. Super. Pisa Classe Di Sci., 11 (2010), 605-634.
![]() ![]() |
[13] |
P. Li and S. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math., 69 (1982), 269-291.
doi: 10.1007/BF01399507.![]() ![]() ![]() |
[14] |
Y. Li, Some remarks on Willmore surfaces embedded in $R^3$, J. Geom. Anal., 26 (2016), 2411-2424.
doi: 10.1007/s12220-015-9631-5.![]() ![]() ![]() |
[15] |
F. Marques and A. Neves, Min-Max theorey and the Willmore conjecture, Ann. Math., (2014), 683–782.
doi: 10.4007/annals.2014.179.2.6.![]() ![]() ![]() |
[16] |
B. Matthias and K. Ernst, Existence of minimizing Willmore surfaces of prescribed genus, Int. Math. Res. Notices, 10 (2003), 553-576.
![]() |
[17] |
R. Schatzle, The Willmore boundary problem, Calc. Var. Partial Differ. Equ., 37 (2010), 275-302.
doi: 10.1007/s00526-009-0244-3.![]() ![]() ![]() |
[18] |
S. Scholtes, Elastic catenoids, Int. Math. J. Anal. Appl., 31 (2011), 125-143.
doi: 10.1524/anly.2011.1088.![]() ![]() ![]() |
[19] |
Y. Xie and Z. Ou-Yang, Helfrich Theory of Biomembranes, Modern Phys. Lett. B, 6 (1992), 917-933.
![]() |