-
Previous Article
Emergent dynamics of the fractional Cucker-Smale model under general network topologies
- CPAA Home
- This Issue
-
Next Article
Sharp subcritical Sobolev inequalities and uniqueness of nonnegative solutions to high-order Lane-Emden equations on $ \mathbb{S}^n $
Minimisers of Helfrich functional for surfaces of revolution
Department of Mathematical Sciences, Tsinghua University, China |
In this paper we investigate the existence and the properties for the minimisers of a special Helfrich functional for surfaces of revolution with Dirichlet boundary value conditions. Removing the even restriction for the admissible functions in [
References:
[1] |
K. Brazda, L. Lussardi and U. Stefanelli, Existence of varifold minimizers for the multiphase Canham-Helfrich functional, Calc Var. Partial Differ. Equ., 59 (2020), 26 pp.
doi: 10.1007/s00526-020-01759-9. |
[2] |
P. Canham,
The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theor. Biol., 26 (1970), 26-61.
|
[3] |
R. Choksi, M. Morandotti and M. Veneroni,
Global minimizers for axisymmetric multiphase membranes, ESAIM, Control, Optimi. Calc. Var., 19 (1970), 1014-1029.
doi: 10.1051/cocv/2012042. |
[4] |
R. Choksi and M. Veneroni,
Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case, Calc. Var. Partial Differ. Equ., 48 (2013), 337-366.
doi: 10.1007/s00526-012-0553-9. |
[5] |
K. Deckelnick, M. Doemeland and H. Grunau, Boundary value problems for a special Helfrich functional for surfaces of revolution: existence and asymptotic behaviour, Calc. Var. Partial Differ. Equ., 60 (2021), 31 pp.
doi: 10.1007/s00526-020-01875-6. |
[6] |
K. Deckelnick, H. Grunau and M. Roger,
Minimising a relaxed Willmore functional for graphs subject to boundary conditions, Interf. Free Bound., 19 (2017), 109-140.
doi: 10.4171/IFB/378. |
[7] |
S. Eichmann and H. Grunau,
Existence for Willmore surfaces of revolution satisfying non-symmetric Dirichlet boundary conditions, Adv. Calc. Var., 12 (2019), 333-361.
doi: 10.1515/acv-2016-0038. |
[8] |
S. Eichmann and A. Koeller,
Symmetry for Willmore Surfaces of Revolution, J. Geom. Anal., 27 (2016), 1-25.
|
[9] |
H. Frieske and M. Mahnig,
Elastic properties of lipid bilayers: theory and possible experiments, Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences, 28 (1973), 693-703.
|
[10] |
M. Giaquinta and S. Hildebrandt, Calculus of Variations I, Oxford University Press, 1996.
![]() ![]() |
[11] |
H. Jian and H. Zeng,
Existence and uniqueness for variational problem from progressive lens design, Front. Math. China, 15 (2020), 491-505.
doi: 10.1007/s11464-020-0845-x. |
[12] |
E. Kuwert and R. Schatzle,
Closed surfaces with bounds on their Willmore energy, Ann. Della Scuola Norm. Super. Pisa Classe Di Sci., 11 (2010), 605-634.
|
[13] |
P. Li and S. Yau,
A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math., 69 (1982), 269-291.
doi: 10.1007/BF01399507. |
[14] |
Y. Li,
Some remarks on Willmore surfaces embedded in $R^3$, J. Geom. Anal., 26 (2016), 2411-2424.
doi: 10.1007/s12220-015-9631-5. |
[15] |
F. Marques and A. Neves, Min-Max theorey and the Willmore conjecture, Ann. Math., (2014), 683–782.
doi: 10.4007/annals.2014.179.2.6. |
[16] |
B. Matthias and K. Ernst,
Existence of minimizing Willmore surfaces of prescribed genus, Int. Math. Res. Notices, 10 (2003), 553-576.
|
[17] |
R. Schatzle,
The Willmore boundary problem, Calc. Var. Partial Differ. Equ., 37 (2010), 275-302.
doi: 10.1007/s00526-009-0244-3. |
[18] |
S. Scholtes,
Elastic catenoids, Int. Math. J. Anal. Appl., 31 (2011), 125-143.
doi: 10.1524/anly.2011.1088. |
[19] |
Y. Xie and Z. Ou-Yang,
Helfrich Theory of Biomembranes, Modern Phys. Lett. B, 6 (1992), 917-933.
|
show all references
References:
[1] |
K. Brazda, L. Lussardi and U. Stefanelli, Existence of varifold minimizers for the multiphase Canham-Helfrich functional, Calc Var. Partial Differ. Equ., 59 (2020), 26 pp.
doi: 10.1007/s00526-020-01759-9. |
[2] |
P. Canham,
The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theor. Biol., 26 (1970), 26-61.
|
[3] |
R. Choksi, M. Morandotti and M. Veneroni,
Global minimizers for axisymmetric multiphase membranes, ESAIM, Control, Optimi. Calc. Var., 19 (1970), 1014-1029.
doi: 10.1051/cocv/2012042. |
[4] |
R. Choksi and M. Veneroni,
Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case, Calc. Var. Partial Differ. Equ., 48 (2013), 337-366.
doi: 10.1007/s00526-012-0553-9. |
[5] |
K. Deckelnick, M. Doemeland and H. Grunau, Boundary value problems for a special Helfrich functional for surfaces of revolution: existence and asymptotic behaviour, Calc. Var. Partial Differ. Equ., 60 (2021), 31 pp.
doi: 10.1007/s00526-020-01875-6. |
[6] |
K. Deckelnick, H. Grunau and M. Roger,
Minimising a relaxed Willmore functional for graphs subject to boundary conditions, Interf. Free Bound., 19 (2017), 109-140.
doi: 10.4171/IFB/378. |
[7] |
S. Eichmann and H. Grunau,
Existence for Willmore surfaces of revolution satisfying non-symmetric Dirichlet boundary conditions, Adv. Calc. Var., 12 (2019), 333-361.
doi: 10.1515/acv-2016-0038. |
[8] |
S. Eichmann and A. Koeller,
Symmetry for Willmore Surfaces of Revolution, J. Geom. Anal., 27 (2016), 1-25.
|
[9] |
H. Frieske and M. Mahnig,
Elastic properties of lipid bilayers: theory and possible experiments, Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences, 28 (1973), 693-703.
|
[10] |
M. Giaquinta and S. Hildebrandt, Calculus of Variations I, Oxford University Press, 1996.
![]() ![]() |
[11] |
H. Jian and H. Zeng,
Existence and uniqueness for variational problem from progressive lens design, Front. Math. China, 15 (2020), 491-505.
doi: 10.1007/s11464-020-0845-x. |
[12] |
E. Kuwert and R. Schatzle,
Closed surfaces with bounds on their Willmore energy, Ann. Della Scuola Norm. Super. Pisa Classe Di Sci., 11 (2010), 605-634.
|
[13] |
P. Li and S. Yau,
A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math., 69 (1982), 269-291.
doi: 10.1007/BF01399507. |
[14] |
Y. Li,
Some remarks on Willmore surfaces embedded in $R^3$, J. Geom. Anal., 26 (2016), 2411-2424.
doi: 10.1007/s12220-015-9631-5. |
[15] |
F. Marques and A. Neves, Min-Max theorey and the Willmore conjecture, Ann. Math., (2014), 683–782.
doi: 10.4007/annals.2014.179.2.6. |
[16] |
B. Matthias and K. Ernst,
Existence of minimizing Willmore surfaces of prescribed genus, Int. Math. Res. Notices, 10 (2003), 553-576.
|
[17] |
R. Schatzle,
The Willmore boundary problem, Calc. Var. Partial Differ. Equ., 37 (2010), 275-302.
doi: 10.1007/s00526-009-0244-3. |
[18] |
S. Scholtes,
Elastic catenoids, Int. Math. J. Anal. Appl., 31 (2011), 125-143.
doi: 10.1524/anly.2011.1088. |
[19] |
Y. Xie and Z. Ou-Yang,
Helfrich Theory of Biomembranes, Modern Phys. Lett. B, 6 (1992), 917-933.
|
[1] |
Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205 |
[2] |
John R. Graef, Lingju Kong, Min Wang. Existence of multiple solutions to a discrete fourth order periodic boundary value problem. Conference Publications, 2013, 2013 (special) : 291-299. doi: 10.3934/proc.2013.2013.291 |
[3] |
Feliz Minhós, T. Gyulov, A. I. Santos. Existence and location result for a fourth order boundary value problem. Conference Publications, 2005, 2005 (Special) : 662-671. doi: 10.3934/proc.2005.2005.662 |
[4] |
John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269-275. doi: 10.3934/proc.2009.2009.269 |
[5] |
Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234 |
[6] |
Xu Liu, Jun Zhou. Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28 (2) : 599-625. doi: 10.3934/era.2020032 |
[7] |
Zhilin Yang, Jingxian Sun. Positive solutions of a fourth-order boundary value problem involving derivatives of all orders. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1615-1628. doi: 10.3934/cpaa.2012.11.1615 |
[8] |
Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure and Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843 |
[9] |
Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569 |
[10] |
Agnid Banerjee, Nicola Garofalo. On the Dirichlet boundary value problem for the normalized $p$-laplacian evolution. Communications on Pure and Applied Analysis, 2015, 14 (1) : 1-21. doi: 10.3934/cpaa.2015.14.1 |
[11] |
Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431 |
[12] |
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 |
[13] |
Shenghao Li, Min Chen, Bing-Yu Zhang. A non-homogeneous boundary value problem of the sixth order Boussinesq equation in a quarter plane. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2505-2525. doi: 10.3934/dcds.2018104 |
[14] |
John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276 |
[15] |
John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337-344. doi: 10.3934/proc.2005.2005.337 |
[16] |
John R. Graef, Bo Yang. Positive solutions of a third order nonlocal boundary value problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 89-97. doi: 10.3934/dcdss.2008.1.89 |
[17] |
Pablo Amster, Colin Rogers. On a Ermakov-Painlevé II reduction in three-ion electrodiffusion. A Dirichlet boundary value problem. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3277-3292. doi: 10.3934/dcds.2015.35.3277 |
[18] |
Feliz Minhós, João Fialho. On the solvability of some fourth-order equations with functional boundary conditions. Conference Publications, 2009, 2009 (Special) : 564-573. doi: 10.3934/proc.2009.2009.564 |
[19] |
Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709 |
[20] |
Jun Zhou. Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28 (1) : 67-90. doi: 10.3934/era.2020005 |
2021 Impact Factor: 1.273
Tools
Article outline
[Back to Top]