We prove new existence criteria relevant for the non-linear elliptic PDE of the form $ \Delta_{S^2} u = C-he^{u} $, considered on a two dimensional sphere $ S^2 $, in the parameter regime $ 2\leq C<4 $. We apply this result, as well as several previously known results valid when $ C<2 $, to discuss existence of solutions of a particular PDE modelling ocean surface currents.
Citation: |
[1] | A. Constantin and R. S. Johnson, Large gyres as a shallow-water asymptotic solution of Euler's equation in spherical coordinates, Proc. A., 473 (2017), 20170063, 17 pp. doi: 10.1098/rspa.2017.0063. |
[2] | A. Constantin and V. S. Krishnamurthy, Stuart-type vortices on a rotating sphere, J. Fluid Mech., 869 (2019), 1072-1084. doi: 10.1017/jfm.2019.109. |
[3] | A. Constantin, D. G. Crowdy, V. S. Krishnamurthy and M. H. Wheeler, Stuart-type polar vortices on a rotating sphere, Discret. Contin. Dynam. Syst., 41 (2021), 201-215. doi: 10.3934/dcds.2020263. |
[4] | J. T. Stuart, On finite amplitude oscillations in laminar mixing layers, J. Fluid Mech., 29 (1967), 417-440. |
[5] | D. G. Crowdy, Stuart vortices on a sphere, J. Fluid Mech., 398 (2004), 381-402. doi: 10.1017/S0022112003007043. |
[6] | J. L. Kazdan and F. W. Warner, Curvature Functions for Compact 2-Manifolds, Ann. Math., 99 (1974), 14-47. doi: 10.2307/1971012. |
[7] | T. Aubin, Meilleures constantes dans le théorème d'nclusion de Sobolev et un théeorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal., 32 (1979), 148-174. doi: 10.1016/0022-1236(79)90052-1. |
[8] | J. Dolbeault, M. J. Esteban and and G. Jankowiak, Onofri inequalities and rigidity results, Discret. Contin. Dynam. Syst., 37 (2017), 3059-3078. doi: 10.3934/dcds.2017131. |
[9] | J. L. Kazdan and F. W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J. Differ. Geom., 10 (1975), 113-134. |
[10] | J. L. Kazdan and F. W. Warner, Existence and Conformal Deformation of Metrics With Prescribed Gaussian and Scalar Curvatures, Ann. Math., 101 (1975), 317-331. doi: 10.2307/1970993. |
[11] | J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077-1092. doi: 10.1512/iumj.1971.20.20101. |
[12] | T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer monographs in mathematics, Springer, 1998. doi: 10.1007/978-3-662-13006-3. |
[13] | J. Dolbeault, M. J. Esteban and G. Jankowiak, The Moser-Trudinger-Onofri Inequality, Chin. Ann. Math., 36 (2015), 777-802. doi: 10.1007/s11401-015-0976-7. |
[14] | R. A. Horn and R. Johnson, Matrix Analysis, 2nd Edition, Cambridge University Press, Cambridge, 2013. |
[15] | W. Chen and C. Li, Qualitative properties of solutions to some nonlinear elliptic equations in $R^2$, Duke Math. J., 71 (1993), 427-439. doi: 10.1215/S0012-7094-93-07117-7. |
[16] | S. Y. A. Chang and F. Hang, Improved Moser-Trudinger-Onofri inequality under constraints, Commun. Pure Appl. Math., 75 (2022), 197-220. |
[17] | P. Delsarte, J. M. Goethals and J. J. Seidel, Spherical codes and designs, Geom. Dedicata, 6 (1977), 363-388. doi: 10.1007/bf03187604. |
[18] | T. Sakajo, Exact solution to a Liouville equation with Stuart vortex distribution on the surface of a torus, Proc. R. Soc. A, 475 (2019), 20180666. |
[19] | J. P. Bourguignon and J. P. Ezin, Scalar curvature functions in a conformal class of metrics and conformal transformations, Trans. Amer. Math. Soc., 301 (1987), 723-736. doi: 10.2307/2000667. |