Liouville links and chains are exact steady solutions of the Euler equation for two-dimensional, incompressible, homogeneous and planar fluid flow, uncovered recently in [
Citation: |
Figure 1. Collapse configurations for the Adler–Moser (AM, column 1) and the two Loutsenko hierarchies ($ \text{L}_1 $ and $ \text{L}_2 $, columns 2 and 3) shown at the stages $ n = 1, 3, 5, 10 $. Size of the markers is proportional to the strengths of the positive (blue diamond) and negative (black disc) point vortices
Figure 2. A single link in each Liouville chain shown corresponding to AM, $ \text{L}_1 $ and $ \text{L}_2 $. The parameter $ A $ varies increases from $ 0 $ towards $ \infty $ as we move down the columns. Similar links exist between every consecutive pair of SPVE in each column of figure 1
Figure 3. Collapse configurations for AM, $ \text{L}_1 $ and $ \text{L}_2 $ with the choice of constants $ C_n = -g_n(-2) $ for all $ n\geq 1 $. Selected equilibria, corresponding to $ g_5' $, $ g_{10}' $, $ g_{15}' $ and $ g_{20}' $, are shown for each hierarchy. The chosen collapse point $ -2 $ is marked by a red triangle
[1] |
M. Adler and J. Moser, On a class of polynomials connected with the Korteweg-deVries equation, Commun. Math. Phys., 30 (1978), 1-30.
![]() ![]() |
[2] |
A. Adriani, A. Mura, G. Orton and et al., Clusters of cyclones encircling Jupiter's poles, Nature, 555 (2018), 216-219.
![]() |
[3] |
A. Constantin and R. S. Johnson, On the modelling of large-scale atmospheric flow, J. Differ. Equ., 285 (2021), 751-798.
doi: 10.1016/j.jde.2021.03.019.![]() ![]() ![]() |
[4] |
A. Constantin, D. G. Crowdy, V. S. Krishnamurthy and M. H. Wheeler, Stuart-type polar vortices on a rotating sphere, Discrete Contin. Dyn. Syst. A, 41 (2021), 201-215.
doi: 10.3934/dcds.2020263.![]() ![]() ![]() |
[5] |
A. Constantin and R. S. Johnson, On the propagation of waves in the atmosphere, Proc. R. Soc. A, 477 (2021), 20200424.
![]() ![]() |
[6] |
A. Constantin and V. S. Krishnamurthy, Stuart-type vortices on a rotating sphere, J. Fluid Mech., 865 (2019), 1072-1084.
doi: 10.1017/jfm.2019.109.![]() ![]() ![]() |
[7] |
D. Crowdy, Polygonal N-vortex arrays: A Stuart model, Phys. Fluids, 15 (2003), 3710-3717.
doi: 10.1063/1.1623766.![]() ![]() ![]() |
[8] |
D. G. Crowdy, General solutions to the 2D Liouville equation, Int. J. Eng. Sci., 35 (1997), 141-149.
doi: 10.1016/S0020-7225(96)00080-8.![]() ![]() ![]() |
[9] |
D. G. Crowdy, Stuart vortices on a sphere, J. Fluid Mech., 498 (2004), 381-402.
doi: 10.1017/S0022112003007043.![]() ![]() ![]() |
[10] |
A. E. Gill, Atmosphere-Ocean Dynamics: An Introductory Text, International geophysics series, Academic Press, 1982.
![]() |
[11] |
V. S. Krishnamurthy, M. H. Wheeler, D. G. Crowdy and A. Constantin, Steady point vortex pair in a field of Stuart-type vorticity, J. Fluid Mech., 874 (2019), 11 pp.
doi: 10.1017/jfm.2019.502.![]() ![]() ![]() |
[12] |
V. S. Krishnamurthy, M. H. Wheeler, D. G. Crowdy and A. Constantin, A transformation between stationary point vortex equilibria, Proc. R. Soc. A, 476 (2020), 20200310.
![]() ![]() |
[13] |
V. S. Krishnamurthy, M. H. Wheeler, D. G. Crowdy and A. Constantin, Liouville chains: new hybrid vortex equilibria of the two-dimensional Euler equation, J. Fluid Mech., 921 (2021), 35 pp.
doi: 10.1017/jfm.2021.285.![]() ![]() ![]() |
[14] |
C. Li, A. P. Ingersoll, A. P. Klipfel and H. Brettle, Modeling the stability of polygonal patterns of vortices at the poles of Jupiter as revealed by the Juno spacecraft, Proceed. Nation. Acad. Sci., 117 (2020), 24082-24087.
![]() |
[15] |
I. Loutsenko, Equilibrium of charges and differential equations solved by polynomials, J. Phys. A: Math. Gen., 37 (2004), 1309-1321.
doi: 10.1088/0305-4470/37/4/017.![]() ![]() ![]() |
[16] |
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2001.
![]() ![]() |
[17] |
K. Marynets, Stuart-type vortices modeling the antarctic circumpolar current, Monatshefte für Mathematik, 191 (2019), 749-759.
doi: 10.1007/s00605-019-01319-0.![]() ![]() ![]() |
[18] |
A. Mura, A. Adriani and A. Bracco, et al., Oscillations and stability of the Jupiter polar cyclones, Geophys. Res. Lett., 48 (2021), 8 pp.
![]() |
[19] |
P. K. Newton, The $N$-vortex problem: Analytical techniques, in Applied Mathematical Sciences, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4684-9290-3.![]() ![]() ![]() |
[20] |
P. G. Saffman, Vortex Dynamics, Cambridge University Press, 1992.
![]() ![]() |
[21] |
J. T. Stuart, On finite amplitude oscillations in laminar mixing layers, J. Fluid Mech., 29 (1967), 417-440.
![]() |
[22] |
A. Tur and V. Yanovsky, Point vortices with a rational necklace: New exact stationary solutions of the two-dimensional Euler equation, Phys. Fluids, 16 (2004), 2877-2885.
doi: 10.1063/1.1760772.![]() ![]() ![]() |
Collapse configurations for the Adler–Moser (AM, column 1) and the two Loutsenko hierarchies (
A single link in each Liouville chain shown corresponding to AM,
Collapse configurations for AM,
Collapse configurations for AM,
Collapse configurations