
-
Previous Article
Nonexistence of Positive Solutions for high-order Hardy-H$ \acute{e} $non Systems on $ \mathbb{R}^{n} $
- CPAA Home
- This Issue
-
Next Article
Minimisers of Helfrich functional for surfaces of revolution
Emergent dynamics of the fractional Cucker-Smale model under general network topologies
1. | Research Institute of Basic Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea |
2. | Department of Mathematics and Informatics, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany |
We study the fractional Cucker-Smale (in short, CS) model under general network topologies. In [
References:
[1] |
S. Ahn and S. Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17pp.
doi: 10.1063/1.3496895. |
[2] |
G. Albi, N. Bellomo, L. Fermo, S. Y. Ha, J. Kim, L. Pareschi, D. Poyato and J. Soler,
Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29 (2019), 1901-2005.
doi: 10.1142/S0218202519500374. |
[3] |
R. Almeida, R. Kamocki, A. B. Malinowska and T. Odzijewicz, On the necessary optimality conditions for the fractional Cucker-Smale optimal control problem, Commun. Nonlinear Sci. Numer. Simul., 96 (2021), 105678, 22pp.
doi: 10.1016/j.cnsns.2020.105678. |
[4] |
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic,
Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci., 105 (2008), 1232-1237.
|
[5] |
B. Bonilla, M. Rivero and J. J. Trujillo,
On systems of linear fractional differential equations with constant coeffients, Appl. Math. Comput., 187 (2007), 68-78.
doi: 10.1016/j.amc.2006.08.104. |
[6] |
M. Caputo,
Linear model of dissipation whose $Q$ is almost frequency independent-II, Geophys. J R. Astr. Soc., 13 (1967), 529-539.
|
[7] |
Y. P. Choi, S. Y. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, in Active Particles Vol.I-Theory, Models, Applications, Birkhauser-Springer, 2017. |
[8] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[9] |
K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer-Verlag, Berlin Heidelberg, 2010.
doi: 10.1007/978-3-642-14574-2. |
[10] |
J. G. Dong, S. Y. Ha and D. Kim,
Emergent behaviors of continuous and discrete thermomechanical Cucker-Smale models on general digraphs, Math. Models Meth. Appl. Sci., 29 (2019), 589-632.
doi: 10.1142/S0218202519400013. |
[11] |
J. G. Dong and L. Qiu,
Flocking of the Cucker-Smale model on general digraphs, IEEE Trans. Automat. Control, 62 (2017), 5234-5239.
doi: 10.1109/TAC.2016.2631608. |
[12] |
M. Eckert, K. Nagatou, F. Rey, O. Stark and S. Hohmann,
Solution of time-variant fractional differential equations with a generalized Peano-Baker series, IEEE Control Syst. Lett., 3 (2019), 79-84.
|
[13] |
E. Girejko, D. Mozyrska and M. Wyrwas,
Numerical analysis of behaviour of the Cucker-Smale type models with fractional operators, J. Comput. Appl. Math., 339 (2018), 111-123.
doi: 10.1016/j.cam.2017.12.013. |
[14] |
S. Y. Ha and J. Jung, Remarks on the slow relaxation for the fractional Kuramoto model for synchronization, J. Math. Phys., 59 (2018), 032703, 18pp.
doi: 10.1063/1.5005865. |
[15] |
S. Y. Ha, J. Jung and P. Kuchling,
Emergence of anomalous flocking in the fractional Cucker-Smale model, Discrete Contin. Dyn. Syst., 39 (2019), 5465-5489.
doi: 10.3934/dcds.2019223. |
[16] |
S. Y. Ha and J. G. Liu,
A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.
|
[17] |
S. Y. Ha and E. Tadmor,
From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415. |
[18] |
C. Li, A. Chen and J. Ye,
Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys., 230 (2011), 3352-3368.
doi: 10.1016/j.jcp.2011.01.030. |
[19] |
A. B. Malinowska, T. Odzijewicz and E. Schmeidel, On the existence of optimal controls for the fractional continuous-time Cucker-Smale model, in Theory and Applications of Non-integer Order Systems (eds. A. Babiarz, A. Czornik, J. Klamka, M. Niezabitowski), Springer International Publishing, (2017), 227–240. |
[20] |
M. Merkle, Completely monotone functions: a digest, Anal. Number Theor., Approx. Theor., Special Funct., (2014), 347–364. |
[21] |
S. Motsch and E. Tadmor,
Heterophilious dynamics: Enhanced consensus, SIAM Rev., 56 (2014), 577-621.
doi: 10.1137/120901866. |
[22] |
L. Perea, P. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formation, J. Guid. Control Dynam., 32 (2009) 527–537. |
[23] |
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic press, 1998. |
[24] |
K. Sayevand,
Fractional dynamical systems: A fresh view on the local qualitative theorems, Int. J. Nonlinear Anal. Appl., 7 (2016), 303-318.
|
[25] |
W. R. Schneider,
Completely monotone generalized Mittag-Leffler functions, Expo. Math., 14 (1996), 3-16.
|
[26] |
E. D. Sontag, Mathematical Control Theory, $2^nd$ edition, Texts Appl. Math. Springer-Verlag, New York, 1998.
doi: 10.1007/978-1-4612-0577-7. |
[27] |
J. Toner and Y. Tu,
Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E., 58 (1998), 4828-4858.
doi: 10.1103/PhysRevE.58.4828. |
[28] |
T. Vicsek and A. Zefeiris,
Collective motion, Phys. Rep., 517 (2012), 71-140.
|
show all references
References:
[1] |
S. Ahn and S. Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17pp.
doi: 10.1063/1.3496895. |
[2] |
G. Albi, N. Bellomo, L. Fermo, S. Y. Ha, J. Kim, L. Pareschi, D. Poyato and J. Soler,
Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29 (2019), 1901-2005.
doi: 10.1142/S0218202519500374. |
[3] |
R. Almeida, R. Kamocki, A. B. Malinowska and T. Odzijewicz, On the necessary optimality conditions for the fractional Cucker-Smale optimal control problem, Commun. Nonlinear Sci. Numer. Simul., 96 (2021), 105678, 22pp.
doi: 10.1016/j.cnsns.2020.105678. |
[4] |
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic,
Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci., 105 (2008), 1232-1237.
|
[5] |
B. Bonilla, M. Rivero and J. J. Trujillo,
On systems of linear fractional differential equations with constant coeffients, Appl. Math. Comput., 187 (2007), 68-78.
doi: 10.1016/j.amc.2006.08.104. |
[6] |
M. Caputo,
Linear model of dissipation whose $Q$ is almost frequency independent-II, Geophys. J R. Astr. Soc., 13 (1967), 529-539.
|
[7] |
Y. P. Choi, S. Y. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, in Active Particles Vol.I-Theory, Models, Applications, Birkhauser-Springer, 2017. |
[8] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[9] |
K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer-Verlag, Berlin Heidelberg, 2010.
doi: 10.1007/978-3-642-14574-2. |
[10] |
J. G. Dong, S. Y. Ha and D. Kim,
Emergent behaviors of continuous and discrete thermomechanical Cucker-Smale models on general digraphs, Math. Models Meth. Appl. Sci., 29 (2019), 589-632.
doi: 10.1142/S0218202519400013. |
[11] |
J. G. Dong and L. Qiu,
Flocking of the Cucker-Smale model on general digraphs, IEEE Trans. Automat. Control, 62 (2017), 5234-5239.
doi: 10.1109/TAC.2016.2631608. |
[12] |
M. Eckert, K. Nagatou, F. Rey, O. Stark and S. Hohmann,
Solution of time-variant fractional differential equations with a generalized Peano-Baker series, IEEE Control Syst. Lett., 3 (2019), 79-84.
|
[13] |
E. Girejko, D. Mozyrska and M. Wyrwas,
Numerical analysis of behaviour of the Cucker-Smale type models with fractional operators, J. Comput. Appl. Math., 339 (2018), 111-123.
doi: 10.1016/j.cam.2017.12.013. |
[14] |
S. Y. Ha and J. Jung, Remarks on the slow relaxation for the fractional Kuramoto model for synchronization, J. Math. Phys., 59 (2018), 032703, 18pp.
doi: 10.1063/1.5005865. |
[15] |
S. Y. Ha, J. Jung and P. Kuchling,
Emergence of anomalous flocking in the fractional Cucker-Smale model, Discrete Contin. Dyn. Syst., 39 (2019), 5465-5489.
doi: 10.3934/dcds.2019223. |
[16] |
S. Y. Ha and J. G. Liu,
A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.
|
[17] |
S. Y. Ha and E. Tadmor,
From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415. |
[18] |
C. Li, A. Chen and J. Ye,
Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys., 230 (2011), 3352-3368.
doi: 10.1016/j.jcp.2011.01.030. |
[19] |
A. B. Malinowska, T. Odzijewicz and E. Schmeidel, On the existence of optimal controls for the fractional continuous-time Cucker-Smale model, in Theory and Applications of Non-integer Order Systems (eds. A. Babiarz, A. Czornik, J. Klamka, M. Niezabitowski), Springer International Publishing, (2017), 227–240. |
[20] |
M. Merkle, Completely monotone functions: a digest, Anal. Number Theor., Approx. Theor., Special Funct., (2014), 347–364. |
[21] |
S. Motsch and E. Tadmor,
Heterophilious dynamics: Enhanced consensus, SIAM Rev., 56 (2014), 577-621.
doi: 10.1137/120901866. |
[22] |
L. Perea, P. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formation, J. Guid. Control Dynam., 32 (2009) 527–537. |
[23] |
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic press, 1998. |
[24] |
K. Sayevand,
Fractional dynamical systems: A fresh view on the local qualitative theorems, Int. J. Nonlinear Anal. Appl., 7 (2016), 303-318.
|
[25] |
W. R. Schneider,
Completely monotone generalized Mittag-Leffler functions, Expo. Math., 14 (1996), 3-16.
|
[26] |
E. D. Sontag, Mathematical Control Theory, $2^nd$ edition, Texts Appl. Math. Springer-Verlag, New York, 1998.
doi: 10.1007/978-1-4612-0577-7. |
[27] |
J. Toner and Y. Tu,
Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E., 58 (1998), 4828-4858.
doi: 10.1103/PhysRevE.58.4828. |
[28] |
T. Vicsek and A. Zefeiris,
Collective motion, Phys. Rep., 517 (2012), 71-140.
|


[1] |
Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223 |
[2] |
Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168 |
[3] |
Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023 |
[4] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic and Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[5] |
Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062 |
[6] |
Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057 |
[7] |
Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155 |
[8] |
Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022014 |
[9] |
Jan Haskovec, Ioannis Markou. Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime. Kinetic and Related Models, 2020, 13 (4) : 795-813. doi: 10.3934/krm.2020027 |
[10] |
Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure and Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028 |
[11] |
Martin Friesen, Oleksandr Kutoviy. Stochastic Cucker-Smale flocking dynamics of jump-type. Kinetic and Related Models, 2020, 13 (2) : 211-247. doi: 10.3934/krm.2020008 |
[12] |
Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419 |
[13] |
Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317 |
[14] |
Mauro Rodriguez Cartabia. Cucker-Smale model with time delay. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2409-2432. doi: 10.3934/dcds.2021195 |
[15] |
Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 395-426. doi: 10.3934/naco.2021013 |
[16] |
Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 621-636. doi: 10.3934/naco.2021026 |
[17] |
Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic and Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023 |
[18] |
Seung-Yeal Ha, Doheon Kim, Weiyuan Zou. Slow flocking dynamics of the Cucker-Smale ensemble with a chemotactic movement in a temperature field. Kinetic and Related Models, 2020, 13 (4) : 759-793. doi: 10.3934/krm.2020026 |
[19] |
Zhisu Liu, Yicheng Liu, Xiang Li. Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3693-3716. doi: 10.3934/dcdsb.2020253 |
[20] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic and Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]