# American Institute of Mathematical Sciences

August  2022, 21(8): 2857-2872. doi: 10.3934/cpaa.2022078

## Nonexistence of Positive Solutions for high-order Hardy-H$\acute{e}$non Systems on $\mathbb{R}^{n}$

 School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China

Received  November 2021 Revised  January 2022 Published  August 2022 Early access  April 2022

Fund Project: This research was supported by National Natural Science Foundation of China (Grant No. 11871278) and the National Natural Science Foundation of China (Grant No. 11571093)

In this paper, we study the following high-order Hardy-H
 $\acute{e}$
non type system:
 $\begin{cases} \ (-\Delta)^{\frac{\alpha}{2}}u(x) = |x|^{a}v^{p}(x) ,\\ \ (-\Delta)^{\frac{\beta}{2}}v(x) = |x|^{b}u^{q}(x) ,\\ \end{cases}$
where
 $0<\alpha = s_{1}+2 , $ 0<\beta = s_{2}+2
,
 $0 , $ a>-s_{1} $, $ b>-s_{2} $, $ p,q>0 $. There are two cases to be considered. The first one is where the domain is the whole space $ \mathbb{R}^{n} $, and the second one is where the domain is bounded. First of all, we consider the above system in the whole space $ \mathbb{R}^{n} $, we show that the above system are equivalent to the integral system: $ \begin{cases} \ u(x) = \int_{\mathbb{R}^{n}}\frac{|y|^{a}v^{p}(y)}{|x-y|^{n-\alpha}}dy,\\[1.5mm] \ v(x) = \int_{\mathbb{R}^{n}}\frac{|y|^{b}u^{q}(y)}{|x-y|^{n-\beta}}dy.\\ \end{cases} $Then by using the method of moving planes in integral forms, we prove that there are no positive solutions for the above integral system. In addition, while in the subcritical case $ 1
,
 $1 with $ \alpha = \beta $in the above elliptic system, we prove the nonexistence of a positive solution for the above system in $ \mathbb{R}^{n} $. Then, through the $ Doubling\ Lemma $we obtain the singularity estimates of the positive solutions on a bounded domain $ \Omega $. Citation: Rong Zhang. Nonexistence of Positive Solutions for high-order Hardy-H$ \acute{e} $non Systems on$ \mathbb{R}^{n} $. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2857-2872. doi: 10.3934/cpaa.2022078 ##### References:  [1] J. Bertoin, L$\acute{e}$vy Processes, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1996. [2] J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media: Statistical mechanics, models and physical applications, Phys. Report., 195 (1990), 127-293. doi: 10.1016/0370-1573(90)90099-N. [3] L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Ann. Math., 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903. [4] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. [5] W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 949-960. doi: 10.1016/S0252-9602(09)60079-5. [6] W. Chen, C. Li and B. Ou, Qualitative problems of solutions for an integral equation, Discret. Contin. Dynam. Syst., 12 (2005), 347-354. doi: 10.3934/dcds.2005.12.347. [7] W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437. doi: 10.1016/j.aim.2016.11.038. [8] W. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co, Singapore, 2019. doi: 10.1142/10550. [9] P. Constantin, Euler equations, navier-stokes equations and turbulence, Mathematical Foundation of Turbulent Viscous Flows Lecture Notes in Math., 1871 (2006), 1–43. doi: 10.1007/11545989_1. [10] X. Cui and M. Yu, Non-existence of positive solutions for a higher order fractional equation, Discret. Contin. Dynam. Syst., 39 (2019), 1379-1387. doi: 10.3934/dcds.2019059. [11] S. Dipierro, O. Savin and E. Valdinoci, Definition of fractional Laplacian for functions with polynomial growth, Rev. Mat. Iberoam., 35 (2019), 1079-1122. [12] M. Fazly, Liouville theorems for the polyharmonic Henon-Lane-Emden system, Methods Appl. Anal., 21 (2014), 265-282. doi: 10.4310/MAA.2014.v21.n2.a5. [13] M. H$\acute{e}$non, Numerical experiments on the stability of spheriocal stellar systems, Astron. Astrophys., 24 (1973), 229-238. [14] N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag Berlin Heidelberg, New York, 1972. [15] D. Li, P. Niu and R. Zhuo, Symmetry and nonexistence of positive solutions of integral systems with Hardy terms, J. Math. Anal. Appl., 424 (2015), 915-931. doi: 10.1016/j.jmaa.2014.11.029. [16] Y. Li and B. Liu, Singularity estimates for elliptic systems of m-laplacians, J. Korean Math. Soc., 55 (2018), 1423-1433. doi: 10.4134/JKMS.j170724. [17] P. Ma, Q. F. Li and Y. Li, A Pohozaev Identity for the Fractional H$\acute{e}$non System, Acta Math. Sin., Engl. Ser., 33 (2017), 1382-1396. doi: 10.1007/s10114-017-6556-x. [18] P. Ma, Y. Li and J. Zhang, Symmetry and nonexistence of positive solutions for fractional systems, Commun. Pure Appl. Anal., 17 (2018), 1053-1070. doi: 10.3934/cpaa.2018051. [19] P. Polacik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579. doi: 10.1215/S0012-7094-07-13935-8. [20] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003. [21] V. Tarasov and G. Zaslasvky, Fractional dynamics of systems with long-range interaction, Commun. Nonlinear Sci. Numer. Simul., 11 (2006), 885-889. doi: 10.1016/j.cnsns.2006.03.005. [22] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equ., 51 (1984), 126-150. doi: 10.1016/0022-0396(84)90105-0. [23] M. Yu, X. Zhang and B. Zhang, Property of solutions for elliptic equation involving the higher-order fractional Laplacian in$ \mathbb{R}^{n}_{+}$, Commun. Pure Appl. Anal., 19 (2020), 3597-3612. doi: 10.3934/cpaa.2020157. [24] R. Zhang, X. Wang and Z. D. Yang, Symmetry and Nonexistence of Positive Solutions for an Elliptic System Involving the Fractional Laplacian, Quaest. Math., 45 (2022), 247-265. doi: 10.2989/16073606.2020.1854363. show all references ##### References:  [1] J. Bertoin, L$\acute{e}$vy Processes, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1996. [2] J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media: Statistical mechanics, models and physical applications, Phys. Report., 195 (1990), 127-293. doi: 10.1016/0370-1573(90)90099-N. [3] L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Ann. Math., 171 (2010), 1903-1930. doi: 10.4007/annals.2010.171.1903. [4] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. [5] W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 949-960. doi: 10.1016/S0252-9602(09)60079-5. [6] W. Chen, C. Li and B. Ou, Qualitative problems of solutions for an integral equation, Discret. Contin. Dynam. Syst., 12 (2005), 347-354. doi: 10.3934/dcds.2005.12.347. [7] W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437. doi: 10.1016/j.aim.2016.11.038. [8] W. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co, Singapore, 2019. doi: 10.1142/10550. [9] P. Constantin, Euler equations, navier-stokes equations and turbulence, Mathematical Foundation of Turbulent Viscous Flows Lecture Notes in Math., 1871 (2006), 1–43. doi: 10.1007/11545989_1. [10] X. Cui and M. Yu, Non-existence of positive solutions for a higher order fractional equation, Discret. Contin. Dynam. Syst., 39 (2019), 1379-1387. doi: 10.3934/dcds.2019059. [11] S. Dipierro, O. Savin and E. Valdinoci, Definition of fractional Laplacian for functions with polynomial growth, Rev. Mat. Iberoam., 35 (2019), 1079-1122. [12] M. Fazly, Liouville theorems for the polyharmonic Henon-Lane-Emden system, Methods Appl. Anal., 21 (2014), 265-282. doi: 10.4310/MAA.2014.v21.n2.a5. [13] M. H$\acute{e}$non, Numerical experiments on the stability of spheriocal stellar systems, Astron. Astrophys., 24 (1973), 229-238. [14] N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag Berlin Heidelberg, New York, 1972. [15] D. Li, P. Niu and R. Zhuo, Symmetry and nonexistence of positive solutions of integral systems with Hardy terms, J. Math. Anal. Appl., 424 (2015), 915-931. doi: 10.1016/j.jmaa.2014.11.029. [16] Y. Li and B. Liu, Singularity estimates for elliptic systems of m-laplacians, J. Korean Math. Soc., 55 (2018), 1423-1433. doi: 10.4134/JKMS.j170724. [17] P. Ma, Q. F. Li and Y. Li, A Pohozaev Identity for the Fractional H$\acute{e}$non System, Acta Math. Sin., Engl. Ser., 33 (2017), 1382-1396. doi: 10.1007/s10114-017-6556-x. [18] P. Ma, Y. Li and J. Zhang, Symmetry and nonexistence of positive solutions for fractional systems, Commun. Pure Appl. Anal., 17 (2018), 1053-1070. doi: 10.3934/cpaa.2018051. [19] P. Polacik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579. doi: 10.1215/S0012-7094-07-13935-8. [20] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003. [21] V. Tarasov and G. Zaslasvky, Fractional dynamics of systems with long-range interaction, Commun. Nonlinear Sci. Numer. Simul., 11 (2006), 885-889. doi: 10.1016/j.cnsns.2006.03.005. [22] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equ., 51 (1984), 126-150. doi: 10.1016/0022-0396(84)90105-0. [23] M. Yu, X. Zhang and B. Zhang, Property of solutions for elliptic equation involving the higher-order fractional Laplacian in$ \mathbb{R}^{n}_{+}$, Commun. Pure Appl. Anal., 19 (2020), 3597-3612. doi: 10.3934/cpaa.2020157. [24] R. Zhang, X. Wang and Z. D. Yang, Symmetry and Nonexistence of Positive Solutions for an Elliptic System Involving the Fractional Laplacian, Quaest. Math., 45 (2022), 247-265. doi: 10.2989/16073606.2020.1854363.  [1] Kui Li, Zhitao Zhang. Liouville-type theorem for higher-order Hardy-Hénon system. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3851-3869. doi: 10.3934/cpaa.2021134 [2] Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855 [3] Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure and Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807 [4] Yuxia Guo, Ting Liu. Liouville-type theorem for high order degenerate Lane-Emden system. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2073-2100. doi: 10.3934/dcds.2021184 [5] Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure and Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511 [6] Xu Liu, Jun Zhou. Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28 (2) : 599-625. doi: 10.3934/era.2020032 [7] Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549 [8] Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155 [9] Kods Hassine. Existence and uniqueness of radial solutions for Hardy-Hénon equations involving k-Hessian operators. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022084 [10] Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236 [11] Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure and Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565 [12] Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317 [13] Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure and Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273 [14] Jingbo Dou, Huaiyu Zhou. Liouville theorems for fractional Hénon equation and system on$\mathbb{R}^n$. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1915-1927. doi: 10.3934/cpaa.2015.14.1915 [15] Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235 [16] Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082 [17] Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791 [18] Hong Li. Bifurcation of limit cycles from a Li$ \acute{E} \$nard system with asymmetric figure eight-loop case. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022033 [19] Phuong Le. Liouville theorems for an integral equation of Choquard type. Communications on Pure and Applied Analysis, 2020, 19 (2) : 771-783. doi: 10.3934/cpaa.2020036 [20] Ziyi Cai, Haiyang He. Asymptotic behavior of solutions for nonlinear integral equations with Hénon type on the unit Ball. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4349-4362. doi: 10.3934/cpaa.2020196

2021 Impact Factor: 1.273

Article outline