July  2022, 21(7): 2433-2445. doi: 10.3934/cpaa.2022083

Stability analysis of the boundary value problem modelling a two-layer ocean

Delft Institute of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

Received  November 2021 Revised  April 2022 Published  July 2022 Early access  April 2022

We study boundedness of solutions to a linear boundary value problem (BVP) modelling a two-layer ocean with a uniform eddy viscosity in the lower layer and variable eddy viscosity in the upper layer. We analyse bounds of solutions to the given problem on the examples of different eddy viscosity profiles in the case of their parameter dependence.

Citation: Kateryna Marynets. Stability analysis of the boundary value problem modelling a two-layer ocean. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2433-2445. doi: 10.3934/cpaa.2022083
References:
[1]

J. P. Boyd, Dynamics of the Equatorial Ocean, Springer, Berlin, 2018.

[2]

A. Bressan and A. Constantin, The deflection angle of surface ocean currents from the wind direction, J. Geophys. Res.: Oceans, 124 (2019), 7412-7420. 

[3]

A. Constantin, Frictional effects in wind-driven ocean currents, Geophys. Astrophys. Fluid Dyn., 115 (2021), 1-14.  doi: 10.1080/03091929.2020.1748614.

[4]

A. Constantin, D. G. Dritschel and N. Paldor, The deflection angle between a wind-forced surface current and the overlying wind in an ocean with vertically varying eddy viscosity, Phys. Fluids, 32 (2020), 5 pp. doi: 10.1063/5.0030473.

[5]

A. Constantin and R. I. Ivanov, Equatorial wave-current interactions, Commun. Math. Phys., 370 (2019), 1-48.  doi: 10.1007/s00220-019-03483-8.

[6]

A. Constantin and R. S. Johnson, Atmospheric Ekman flows with variable eddy viscosity, Bound. Lay. Meteorol., 170 (2019), 395-414. 

[7]

A. Constantin and R. S. Johnson, On the modelling of large-scale atmospheric flow, J. Differ. Equ., 285 (2021), 751-798.  doi: 10.1016/j.jde.2021.03.019.

[8]

A. Constantin and R. S. Johnson, Ekman-type solutions for shallow-water flows on a rotating sphere: a new perspective on a classical problem, Phys. Fluids, 31 (2019), 021401. 

[9]

A. Constantin and R. S. Johnson, On the nonlinear, three-dimensional structure of equatorial oceanic flows, J. Phys. Oceanogr., 49 (2019), 2029-2042. 

[10]

W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath Mathematical Monographs, Heath, Boston, 1965.

[11]

D. G. DritschelN. Paldor and A. Constantin, The Ekman spiral for piecewise uniform viscosity, Ocean Sci., 16 (2020), 1089-1093. 

[12]

V. W. Ekman, On the influence of the Earth's rotation on ocean-currents, Ark. Mat. Astron. Fys., 2 (1905), 1-52. 

[13]

B. Grisogono, A generalized Ekman layer profile with gradually varying eddy diffusivities, Quart. J. Roy. Meteorol. Soc., 121 (1995), 445-453. 

[14]

O. S. Madsen, A realistic model of the wind-induced Ekman boundary layer, J. Phys. Oceanogr., 7 (1977), 248-255. 

[15]

K. Marynets, A Sturm-Liouville problem arising in the atmospheric boundary-layer dynamics, J. Math. Fluid Mech., 22 (2020), 6 pp doi: 10.1007/s00021-020-00507-5.

[16]

L. Roberti, The Ekman spiral for piecewise-constant eddy viscosity, Appl. Anal., (2021), 1–9. doi: 10.1080/00036811.2021.1896709.

[17]

L. Roberti, Perturbation analysis for the surface deflection angle of Ekman-type flows with variable eddy viscosity, J. Math. Fluid Mech., 23 (2021), 1-7.  doi: 10.1007/s00021-021-00586-y.

[18]

J. Röhrs and K.H. Christensen, Drift in the uppermost part of the ocean, Geophys. Res. Lett., 42 (2015), 10349-10356. 

[19]

T. Ström, On logarithmic norms, SIAM J. Numer. Anal., 12 (1975), 741-753.  doi: 10.1137/0712055.

[20] G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press, Cambridge, UK, 2017. 

show all references

References:
[1]

J. P. Boyd, Dynamics of the Equatorial Ocean, Springer, Berlin, 2018.

[2]

A. Bressan and A. Constantin, The deflection angle of surface ocean currents from the wind direction, J. Geophys. Res.: Oceans, 124 (2019), 7412-7420. 

[3]

A. Constantin, Frictional effects in wind-driven ocean currents, Geophys. Astrophys. Fluid Dyn., 115 (2021), 1-14.  doi: 10.1080/03091929.2020.1748614.

[4]

A. Constantin, D. G. Dritschel and N. Paldor, The deflection angle between a wind-forced surface current and the overlying wind in an ocean with vertically varying eddy viscosity, Phys. Fluids, 32 (2020), 5 pp. doi: 10.1063/5.0030473.

[5]

A. Constantin and R. I. Ivanov, Equatorial wave-current interactions, Commun. Math. Phys., 370 (2019), 1-48.  doi: 10.1007/s00220-019-03483-8.

[6]

A. Constantin and R. S. Johnson, Atmospheric Ekman flows with variable eddy viscosity, Bound. Lay. Meteorol., 170 (2019), 395-414. 

[7]

A. Constantin and R. S. Johnson, On the modelling of large-scale atmospheric flow, J. Differ. Equ., 285 (2021), 751-798.  doi: 10.1016/j.jde.2021.03.019.

[8]

A. Constantin and R. S. Johnson, Ekman-type solutions for shallow-water flows on a rotating sphere: a new perspective on a classical problem, Phys. Fluids, 31 (2019), 021401. 

[9]

A. Constantin and R. S. Johnson, On the nonlinear, three-dimensional structure of equatorial oceanic flows, J. Phys. Oceanogr., 49 (2019), 2029-2042. 

[10]

W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath Mathematical Monographs, Heath, Boston, 1965.

[11]

D. G. DritschelN. Paldor and A. Constantin, The Ekman spiral for piecewise uniform viscosity, Ocean Sci., 16 (2020), 1089-1093. 

[12]

V. W. Ekman, On the influence of the Earth's rotation on ocean-currents, Ark. Mat. Astron. Fys., 2 (1905), 1-52. 

[13]

B. Grisogono, A generalized Ekman layer profile with gradually varying eddy diffusivities, Quart. J. Roy. Meteorol. Soc., 121 (1995), 445-453. 

[14]

O. S. Madsen, A realistic model of the wind-induced Ekman boundary layer, J. Phys. Oceanogr., 7 (1977), 248-255. 

[15]

K. Marynets, A Sturm-Liouville problem arising in the atmospheric boundary-layer dynamics, J. Math. Fluid Mech., 22 (2020), 6 pp doi: 10.1007/s00021-020-00507-5.

[16]

L. Roberti, The Ekman spiral for piecewise-constant eddy viscosity, Appl. Anal., (2021), 1–9. doi: 10.1080/00036811.2021.1896709.

[17]

L. Roberti, Perturbation analysis for the surface deflection angle of Ekman-type flows with variable eddy viscosity, J. Math. Fluid Mech., 23 (2021), 1-7.  doi: 10.1007/s00021-021-00586-y.

[18]

J. Röhrs and K.H. Christensen, Drift in the uppermost part of the ocean, Geophys. Res. Lett., 42 (2015), 10349-10356. 

[19]

T. Ström, On logarithmic norms, SIAM J. Numer. Anal., 12 (1975), 741-753.  doi: 10.1137/0712055.

[20] G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press, Cambridge, UK, 2017. 
Figure 1.  Ekman flow and the net water transport in the Northern Hemisphere
Figure 2.  Piecewise-constant eddy viscosity profile for a two-layer ocean
Figure 3.  Piecewise-constant eddy viscosity profile for a three-layer ocean
Figure 4.  Piecewise-constant generalized eddy viscosity profile for a two-layer ocean
Figure 5.  Linear eddy viscosity profiles for a two-layer ocean at a fixed ocean depth: red line – the increasing regime and blue points – the decreasing regime
Figure 6.  The polynominal eddy viscosity profile at a fixed ocean depth $ -h $ for a fixed value of parameter $ a $
Figure 7.  The exponential eddy viscosity profile at a fixed ocean depth $ -h $ for a fixed value of parameter $ \nu $
[1]

Madalina Petcu, Roger Temam. An interface problem: The two-layer shallow water equations. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5327-5345. doi: 10.3934/dcds.2013.33.5327

[2]

Huiyuan Guo, Quan Yu, Xinzhen Zhang, Lulu Cheng. Low rank matrix minimization with a truncated difference of nuclear norm and Frobenius norm regularization. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022045

[3]

Yifu Feng, Min Zhang. A $p$-spherical section property for matrix Schatten-$p$ quasi-norm minimization. Journal of Industrial and Management Optimization, 2020, 16 (1) : 397-407. doi: 10.3934/jimo.2018159

[4]

M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473

[5]

Anthony Tongen, María Zubillaga, Jorge E. Rabinovich. A two-sex matrix population model to represent harem structure. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1077-1092. doi: 10.3934/mbe.2016031

[6]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[7]

Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355

[8]

Luigi Roberti. The surface current of Ekman flows with time-dependent eddy viscosity. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2463-2477. doi: 10.3934/cpaa.2022064

[9]

Meijuan Shang, Yanan Liu, Lingchen Kong, Xianchao Xiu, Ying Yang. Nonconvex mixed matrix minimization. Mathematical Foundations of Computing, 2019, 2 (2) : 107-126. doi: 10.3934/mfc.2019009

[10]

Paul Skerritt, Cornelia Vizman. Dual pairs for matrix groups. Journal of Geometric Mechanics, 2019, 11 (2) : 255-275. doi: 10.3934/jgm.2019014

[11]

Adel Alahmadi, Hamed Alsulami, S.K. Jain, Efim Zelmanov. On matrix wreath products of algebras. Electronic Research Announcements, 2017, 24: 78-86. doi: 10.3934/era.2017.24.009

[12]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[13]

Dequan Yue, Wuyi Yue. Block-partitioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns. Journal of Industrial and Management Optimization, 2009, 5 (3) : 417-430. doi: 10.3934/jimo.2009.5.417

[14]

Sihem Guerarra. Positive and negative definite submatrices in an Hermitian least rank solution of the matrix equation AXA*=B. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 15-22. doi: 10.3934/naco.2019002

[15]

Wei-Xi Li, Rui Xu. Well-posedness in Sobolev spaces of the two-dimensional MHD boundary layer equations without viscosity. Electronic Research Archive, 2021, 29 (6) : 4243-4255. doi: 10.3934/era.2021082

[16]

Yuhong Dai, Nobuo Yamashita. Convergence analysis of sparse quasi-Newton updates with positive definite matrix completion for two-dimensional functions. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 61-69. doi: 10.3934/naco.2011.1.61

[17]

Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015

[18]

K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026

[19]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[20]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

2021 Impact Factor: 1.273

Article outline

Figures and Tables

[Back to Top]