In this paper, we first establish Hopf's lemmas for parabolic fractional $ p $-equations for $ p \geq 2 $. Then we derive an asymptotic Hopf's lemma for anti-symmetric solutions to parabolic fractional Laplacians. We believe that these Hopf's lemmas will become powerful tools in obtaining qualitative properties of solutions for nonlocal parabolic equations.
Citation: |
[1] |
M. Birkner, J. López-Mimbela and A. Wakolbinger, Comparison results and steady states for the Fujita equation with fractional Laplacian, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 83-97.
doi: 10.1016/J.ANIHPC.2004.05.002.![]() ![]() ![]() |
[2] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
[3] |
W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.
doi: 10.1016/j.aim.2018.07.016.![]() ![]() ![]() |
[4] |
W. Chen, C. Li and Y. Li, A drirect method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038.![]() ![]() ![]() |
[5] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[6] |
W. Chen, C. Li and S. Qi, A Hopf lemma and regularity for fractional $p$-Laplacians, Discrete Contin. Dyn. Syst., 40 (2020), 3235-3252.
doi: 10.3934/dcds.2020034.![]() ![]() ![]() |
[7] |
W. Chen, Y. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.
doi: 10.1016/j.jfa.2017.02.022.![]() ![]() ![]() |
[8] |
W. Chen, C. Li and J. Zhu, Fractional equations with indefinite nonlinearities, Discrete Contin. Dyn. Syst., 39 (2019), 1257-1268.
doi: 10.3934/dcds.2019054.![]() ![]() ![]() |
[9] |
W. Chen, P. Wang, Y. Niu and Y. Hu, Asymptotic method of moving planes for fractional parabolic equations, Adv. Math., 377 (2021), 47 pp.
doi: 10.1016/j.aim.2020.107463.![]() ![]() ![]() |
[10] |
W. Chen and L. Wu, Liouville theorems for fractional parabolic equations, Adv. Nonlinear Stud., 21 (2021), 939-958.
doi: 10.1515/ans-2021-2148.![]() ![]() ![]() |
[11] |
W. Dai, Z. Liu and G. Lu, Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space, Commun. Pure Appl. Anal., 16 (2017), 1253-1264.
doi: 10.3934/cpaa.2017061.![]() ![]() ![]() |
[12] |
W. Dai and G. Qin, Classification of nonnegative classical solutions to third-order equations, Adv. Math., 328 (2018), 822-857.
doi: 10.1016/j.aim.2018.02.016.![]() ![]() ![]() |
[13] |
X. Fernández-Real and X. Ros-Oton, Regularity theory for general stable operators: parabolic equations, J. Funct. Anal., 272 (2017), 4165-4221.
doi: 10.1016/j.jfa.2017.02.015.![]() ![]() ![]() |
[14] |
R. K. Getoor, First passage times for symmetric stable processes in space, Trans. Am. Math. Soc., 101 (1961), 75-90.
doi: 10.1090/S0002-9947-1961-0137148-5.![]() ![]() ![]() |
[15] |
E. Hopf, Elementare Bemerkungen über die Lösungen partieller Differentialgleichngen zweiter Ordnung vom elliptischen Typus, Sitz. Ber. Preuss. Akad. Wissensch. Berlin, Math.-Phys. Kl, 19 (1927), 147–152.
![]() |
[16] |
L. Jin and Y. Li, A Hopf's lemma and the boundary regularity for the fractional $p$-Laplacian, Discrete Contin. Dyn. Syst., 39 (2019), 1477-1495.
doi: 10.3934/dcds.2019063.![]() ![]() ![]() |
[17] |
T. Jin and J. Xiong, A fractional Yamabe flow and some applications, J. Reine Angew. Math., 696 (2014), 187-223.
doi: 10.1515/crelle-2012-0110.![]() ![]() ![]() |
[18] |
C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains, Commun. Partial Differ. Equ., 16 (1991), 491-526.
doi: 10.1080/03605309108820766.![]() ![]() ![]() |
[19] |
Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke math. J., 80 (1995), 383-418.
doi: 10.1215/S0012-7094-95-08016-8.![]() ![]() ![]() |
[20] |
C. Li and W. Chen, A Hopf type lemma for fractional equations, Proc. Amer. Math. Soc., 147 (2019), 1565-1575.
doi: 10.1090/proc/14342.![]() ![]() ![]() |
[21] |
Z. Li and Q. Zhang, Sub-solutions and a point-wise Hopf's lemma for fractional $p$-Laplacian, Commun. Pure Appl. Anal., 20 (2021), 835-865.
doi: 10.3934/cpaa.2020293.![]() ![]() ![]() |
[22] |
Z. Liu, Maximum principles and monotonicity of solutions for fractional $p$-equations in unbounded domains, J. Differ. Equ., 270 (2021), 1043-1078.
doi: 10.1016/j.jde.2020.09.001.![]() ![]() ![]() |
[23] |
G. Lu and J. Zhu, An overdetermined problem in Riese-potential and fractional Laplacian, Nonlinear Anal., 75 (2012), 3036-3048.
doi: 10.1016/j.na.2011.11.036.![]() ![]() ![]() |
[24] |
G. Lu and J. Zhu, The maximum principles and symmetry results for viscosity solutions of fully nonlinear equations, J. Differ. Equ., 258 (2015), 205-2079.
doi: 10.1016/j.jde.2014.11.022.![]() ![]() ![]() |
[25] |
G. Lu and J. Zhu, Axial symmetry and regularity of solutions to an integral equation in a half-space, Pacific J. Math., 253 (2011), 455-473.
doi: 10.2140/pjm.2011.253.455.![]() ![]() ![]() |
[26] |
P. Wang, Uniqueness and monotonicity of solutions for fractional equations with a gradient term, Electron. J. Qual. Theory Differ. Equ., 58 (2021), 1-19.
doi: 10.14232/ejqtde.2021.1.58.![]() ![]() ![]() |
[27] |
L. Wu and W. Chen, Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities, (in Chinese)., Sci. Sin. Math., 52 (2020), 1-22.
doi: 10.1360/SCM-2019-0668.![]() ![]() |
[28] |
L. Wu and W. Chen, The sliding methods for the fractional $p$-Laplacian, Adv. Math., 361 (2020), 35 pp.
doi: 10.1016/j.aim.2019.106933.![]() ![]() ![]() |
Cylinder
Subsolution