The main aim of this work is to investigate the large deviation principle for a class of stochastic integral evolution equations. As applications, our results can be applied to a large class of stochastic models with hereditary or memory effects such as stochastic integral porous medium equations, stochastic integral $ p $-Laplace equations and stochastic integral 2D Navier-Stokes equations.
Citation: |
[1] | V. Barbu, S. Bonaccorsi and L. Tubaro, Existence and asymptotic behavior for hereditary stochastic evolution equations, Appl. Math. Optim., 69 (2014), 273-314. doi: 10.1007/s00245-013-9224-2. |
[2] | W. Beyn, B. Gess, P. Lescot and M. Röckner, The global random attractor for a class of stochastic porous media equations, Commun. Partial Differ. Equ., 36 (2011), 446-469. doi: 10.1080/03605302.2010.523919. |
[3] | A. Budhiraja and P. Dupuis, A variational representation for positive functionals of infinite dimensional Brownian motion, Probab. Math. Statist., 20 (2000), 39-61. doi: 10.1080/13550280152537111. |
[4] | Y. Chen and H. Gao, Well-posedness and large deviations for a class of SPDEs with Lévy noise, J. Differ. Equ., 263 (2017), 5216-5252. doi: 10.1016/j.jde.2017.06.016. |
[5] | P. L. Chow, Large deviation problem for some parabolic itô equations, Commun. Pure Appl. Math., 45 (1992), 97-120. doi: 10.1002/cpa.3160450105. |
[6] | I. Chueshov and A. Millet, Stochastic 2D hydrodynamical type systems: well posedness and large deviations, Appl. Math. Optim., 61 (2010), 379-420. doi: 10.1007/s00245-009-9091-z. |
[7] | A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-03311-7. |
[8] | Z. Dong, J. L. Wu, R. Zhang and T. Zhang, Large deviation principles for first-order scalar conservation laws with stochastic forcing, Ann. Appl. Probab., 30 (2020), 324-367. doi: 10.1214/19-AAP1503. |
[9] | P. Dupuis and R. S. Ellis, A weak convergence approach to the theory of large deviations, Wiley Series in Probability and Statistics: Probability and Statistics, New York, 1997. doi: 10.1002/9781118165904. |
[10] | M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Translated from the Russian by Joseph Szücs. Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4684-0176-9. |
[11] | B. Gess, W. Liu and M. Röckner, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differ. Equ., 251 (2011), 1225-1253. doi: 10.1016/j.jde.2011.02.013. |
[12] | B. Gess, W. Liu and A. Schenke, Random attractors for locally monotone stochastic partial differential equations, J. Differ. Equ., 269 (2020), 3414-3455. doi: 10.1016/j.jde.2020.03.002. |
[13] | W. Hong, S. Li and W. Liu, Freidlin-Wentzell type large deviation principle for multi-scale locally monotone SPDEs, SIAM J. Math. Anal., 53 (2021), 6517-6561. doi: 10.1137/21M1404612. |
[14] | X. Huang, W. Hong and W. Liu, Stochastic integral evolution equations with locally monotone and non-Lipschitz coefficients, Front. Math. China., 17 (2022), In press. |
[15] | N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations, Current Prob. Math., 14 (1979), 71-147. |
[16] | Y. Li, Y. Xie and X. Zhang, Large deviation principle for stochastic heat equation with memory, Discrete Contin. Dyn. Syst., 35 (2015), 5221-5237. doi: 10.3934/dcds.2015.35.5221. |
[17] | D. Lipshutz, Exit time asymptotics for small noise stochastic delay differential equations, Discrete Contin. Dyn. Syst., 38 (2018), 3099-3138. doi: 10.3934/dcds.2018135. |
[18] | W. Liu, Large deviations for stochastic evolution equations with small multiplicative noise, Appl. Math. Optim., 61 (2010), 27-56. doi: 10.1007/s00245-009-9072-2. |
[19] | W. Liu, Well-posedness of stochastic partial differential equations with Lyapunov condition, J. Differ. Equ., 255 (2013), 572-592. doi: 10.1016/j.jde.2013.04.021. |
[20] | W. Liu and M. Röckner, SPDE in hilbert space with locally monotone coefficients, J. Funct. Anal., 259 (2010), 2902-2922. doi: 10.1016/j.jfa.2010.05.012. |
[21] | W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Universitext, Springer, Cham, 2015. doi: 10.1007/978-3-319-22354-4. |
[22] | W. Liu, M. Röckner and J. L. da Silva, Quasi-linear (stochastic) partial differential equations with time-fractional derivatives, SIAM J. Math. Anal., 50 (2018), 2588-2607. doi: 10.1137/17M1144593. |
[23] | W. Liu, M. Röckner and J. L. da Silva, Strong dissipativity of generalized time-fractional derivatives and quasi-linear (stochastic) partial differential equations, J. Funct. Anal., 281 (2021), No.109135, 34pp. doi: 10.1016/j.jfa.2021.109135. |
[24] | W. Liu, C. Tao and J. Zhu, Large deviation principle for a class of SPDE with locally monotone coefficients, Sci. China Math., 63 (2020), 1181-1202. doi: 10.1007/s11425-018-9440-3. |
[25] | S. Mohammed and T. Zhang, Large deviations for stochastic systems with memory, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 881-893. doi: 10.3934/dcdsb.2006.6.881. |
[26] | E. Pardoux, Équations Aux Dérivées partielles stochastiques de type monotone, (French) Collège de France, Paris, 1975. |
[27] | J. Prüss, Evolutionary Integral Equations and Applications, Monogr. Math, 87., Birkhäuser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-8570-6. |
[28] | J. Ren and X. Zhang, Freidlin-Wentzell's large deviations for stochastic evolution equations, J. Funct. Anal., 254 (2008), 3148-3172. doi: 10.1016/j.jfa.2008.02.010. |
[29] | M. Riedle and J. Zhai, Large deviations for stochastic heat equations with memory driven by Lévy-type noise, Discrete Contin. Dyn. Syst., 38 (2018), 1983-2005. doi: 10.3934/dcds.2018080. |
[30] | M. Röckner, B. Schmuland and X. Zhang, Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions, Condensed Matter Physics., 11 (2018), 247-259. |
[31] | M. Röckner, F. Y. Wang and L. Wu, Large deviations for stochastic generalized porous media equations, Stochastic Process. Appl., 116 (2006), 1677-1689. doi: 10.1016/j.spa.2006.05.007. |
[32] | M. Röckner and T. Zhang, Stochastic 3D tamed Navier-Stokes equations: existence, uniqueness and small time large deviation principles, J. Differ. Equ., 252 (2012), 716-744. doi: 10.1016/j.jde.2011.09.030. |
[33] | M. Röckner, T. Zhang and X. Zhang, Large deviations for stochastic tamed 3D Navier-Stokes equations, Appl. Math. Optim., 61 (2010), 267-285. doi: 10.1007/s00245-009-9089-6. |
[34] | B. L. Rozovskii and S. V. Lototsky, Stochastic evolution systems. Linear theory and applications to non-linear filtering, Second edition, Probability Theory and Stochastic Modelling 89, Springer, Cham, 2018. doi: 10.1007/978-3-319-94893-5. |
[35] | S. S. Sritharan and P. Sundar, Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise, Stochastic. Process. Appl., 116 (2006), 1636-1659. doi: 10.1016/j.spa.2006.04.001. |
[36] | D. W. Stroock, An Introduction to the Theory of Large Deviations, Universitext. Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4613-8514-1. |
[37] | S. R. S. Varadhan, Asymptotic probabilities and differential equations, Commun. Pure Appl. Math., 19 (1966), 261-286. doi: 10.1002/cpa.3160190303. |
[38] | F. Y. Wang, Harnack inequality and applications for stochastic generalized porous media equations, Ann. Probab., 35 (2007), 1333-1350. doi: 10.1214/009117906000001204. |
[39] | J. Xiong and J. Zhai, Large deviations for locally monotone stochastic partial differential equations driven by Lévy noise, Bernoulli, 24 (2018), 2842-2874. doi: 10.3150/17-BEJ947. |
[40] | J. Zhai and T. Zhang, Large deviations for stochastic models of two-dimensional second grade fluids, Appl. Math. Optim., 75 (2017), 471-498. doi: 10.1007/s00245-016-9338-4. |
[41] | X. Zhang, On stochastic evolution equations with non-Lipschitz coefficients, Stoch. Dyn., 9 (2009), 549-595. doi: 10.1142/S0219493709002774. |