• Previous Article
    Local well-posedness to the 2D Cauchy problem of non-isothermal nonhomogeneous nematic liquid crystal flows with vacuum at infinity
  • CPAA Home
  • This Issue
  • Next Article
    Freidlin-Wentzell's large deviation principle for stochastic integral evolution equations
September  2022, 21(9): 3117-3139. doi: 10.3934/cpaa.2022092

Systems of semilinear wave equations with multiple speeds in two space dimensions and a weaker null condition

Department of Mathematics, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan

* Corresponding author

Received  February 2022 Revised  April 2022 Published  September 2022 Early access  May 2022

Fund Project: The work of the second author is partially supported by JSPS KAKENHI Grant No. 18H01128

We consider the Cauchy problem for systems of semilinear wave equations with multiple propagation speeds in two space dimensions. The nonlinear terms are assumed to be cubic and to depend only on first derivatives of the unknowns. The null condition is one of the sufficient condition for the small data global existence for the single-speed case, and it is extended to the multiple-speed case by many authors. Recently, various weaker sufficient conditions for the small data global existence were obtained for the single-speed case. In this paper, we introduce the multiple-speed version of one of such weaker null conditions, and we show the small data global existence. The asymptotic behavior of global solutions is also investigated through associated systems of ODEs called the reduced systems.

Citation: Minggang Cheng, Soichiro Katayama. Systems of semilinear wave equations with multiple speeds in two space dimensions and a weaker null condition. Communications on Pure and Applied Analysis, 2022, 21 (9) : 3117-3139. doi: 10.3934/cpaa.2022092
References:
[1]

R. Agemi and K. Yokoyama, The null condition and global existence of solutions to systems of wave equations with different speeds, in Advances in Nonlinear Partial Differential Equations and Stochastics (eds. S. Kawahara and T. Yanagisawa), Ser. on Adv. Math. for Appl. Sci., Vol. 48, World Scientific, (1998), 43–86.

[2]

S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I, Invent. Math., 145 (2001), 597-618.  doi: 10.1007/s002220100165.

[3]

S. Alinhac, Semilinear hyperbolic systems with blowup at infinity, Indiana Univ. Math. J., 55 (2006), 1209-1232.  doi: 10.1512/iumj.2006.55.2671.

[4]

D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., 39 (1986), 267-282.  doi: 10.1002/cpa.3160390205.

[5]

P. Godin, Lifespan of solutions of semilinear wave equations in two space dimensions, Comm. Partial Differ. Equ., 18 (1993), 895-916.  doi: 10.1080/03605309308820955.

[6]

A. Hoshiga, The initial value problems for quasi-linear wave equations in two space dimensions with small data, Adv. Math. Sci. Appl., 5 (1995), 67-89. 

[7]

A. Hoshiga, The existence of global solutions to systems of quasilinear wave equations with quadratic nonlinearities in $2$-dimensional space, Funkcial. Ekvac., 49 (2006), 357-384.  doi: 10.1619/fesi.49.357.

[8]

A. Hoshiga, The existence of the global solutions to semilinear wave equations with a class of cubic nonlinearities in $2$-dimensional space, Hokkaido Math. J., 37 (2008), 669-688.  doi: 10.14492/hokmj/1249046363.

[9]

A. Hoshiga and H. Kubo, Global small amplitude solutions of nonlinear hyperbolic systems with a critical exponent under the null condition, SIAM J. Math. Anal., 31 (2000), 486-513.  doi: 10.1137/S0036141097326064.

[10]

S. Katayama, Global existence and asymptotic behavior of solutions to systems of semilinear wave equations in two space dimensions, Hokkaido J. Math., 37 (2008), 689-714.  doi: 10.14492/hokmj/1249046364.

[11]

S. Katayama, Asymptotic pointwise behavior for systems of semilinear wave equations in three space dimensions, J. Hyperbolic Differ. Equ., 9 (2012), 263-323. 

[12]

S. Katayama, Global Solutions and the Asymptotic Behavior for Nonlinear Wave Equations with Small Initial Data, MSJ Memoirs, Math. Soc. Japan, Tokyo, 2017.

[13]

S. Katayama, Remarks on the asymptotic behavior of global solutions to systems of semilinear wave equations, in Asymptotic Analysis for Nonlinear Dispersive and Wave Equations, Math. Soc. Japan, Tokyo, (2019), 55–84. doi: 10.2969/aspm/08110055.

[14]

S. KatayamaT. Matoba and H. Sunagawa, Semilinear hyperbolic systems violating the null condition, Math. Ann., 31 (2015), 275-312.  doi: 10.1007/s00208-014-1071-1.

[15]

S. KatayamaA. Matsumura and H. Sunagawa, Energy decay for systems of semilinear wave equations with dissipative structure in two space dimensions, NoDEA Nonlinear Differ. Equ. Appl., 22 (2015), 601-628.  doi: 10.1007/s00030-014-0297-7.

[16]

S. KatayamaD. Murotani and H. Sunagawa, The energy decay and asymptotics for a class of semilinear wave equations in two space dimensions, J. Evol. Equ., 12 (2012), 891-916.  doi: 10.1007/s00028-012-0160-4.

[17]

S. Klainerman, The null condition and global existence to nonlinear wave equations, in Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1, Lectures in Appl. Math., AMS, Providence, (1986), 293-326.

[18]

S. Klainerman, Remarks on the global Sobolev inequalities in the Minkowski space $ {\mathbb R}^{n+1}$, Comm. Pure Appl. Math., 40 (1987), 111-117.  doi: 10.1002/cpa.3160400105.

[19]

M. Kovalyov, Resonance-type behaviour in a system of nonlinear wave equations, J. Differ. Equ., 77 (1989), 73-83.  doi: 10.1016/0022-0396(89)90157-5.

[20]

H. Kubo, Asymptotic behavior of solutions to semilinear wave equations with dissipative structure, Discrete Contin. Dynam. Systems, Supplement Volume, 2007 (2007), 602–613.

[21]

H. Kubo, Modification of the vector-field method related to quadratically perturbed wave equations in two space dimensions, in Asymptotic Analysis for Nonlinear Dispersive and Wave Equations, Math. Soc. Japan, Tokyo, (2019), 139–172 doi: 10.2969/aspm/08110139.

[22]

H. Lindblad and I. Rodnianski, The weak null condition for Einstein's equations, C. R. Math. Acad. Sci. Paris, 336 (2003), 901-906.  doi: 10.1016/S1631-073X(03)00231-0.

[23]

Y. Nishii and H. Sunagawa, Agemi type structural condition for systems of semilinear wave equations, J. Hyperbolic Differ. Equ., 17 (2020), 459-473.  doi: 10.1142/S0219891620500125.

[24]

Y. Nishii, H. Sunagawa and H. Terashita, Energy decay for small solutions to semilinear wave equations with weakly dissipative structure, J. Math. Soc. Japan, 73 (2021), 767–779. . doi: 10.2969/jmsj/84148414.

[25]

T. C. Sideris and S. Tu, Global existence for systems of nonlinear wave equations in $3$D with multiple speeds, SIAM J. Math. Anal., 33 (2001), 477-488.  doi: 10.1137/S0036141000378966.

[26]

K. Yokoyama, Global existence of classical solutions to systems of wave equations with critical nonlinearity in three space dimensions, J. Math. Soc. Japan, 52 (2000), 609-632.  doi: 10.2969/jmsj/05230609.

show all references

References:
[1]

R. Agemi and K. Yokoyama, The null condition and global existence of solutions to systems of wave equations with different speeds, in Advances in Nonlinear Partial Differential Equations and Stochastics (eds. S. Kawahara and T. Yanagisawa), Ser. on Adv. Math. for Appl. Sci., Vol. 48, World Scientific, (1998), 43–86.

[2]

S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I, Invent. Math., 145 (2001), 597-618.  doi: 10.1007/s002220100165.

[3]

S. Alinhac, Semilinear hyperbolic systems with blowup at infinity, Indiana Univ. Math. J., 55 (2006), 1209-1232.  doi: 10.1512/iumj.2006.55.2671.

[4]

D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., 39 (1986), 267-282.  doi: 10.1002/cpa.3160390205.

[5]

P. Godin, Lifespan of solutions of semilinear wave equations in two space dimensions, Comm. Partial Differ. Equ., 18 (1993), 895-916.  doi: 10.1080/03605309308820955.

[6]

A. Hoshiga, The initial value problems for quasi-linear wave equations in two space dimensions with small data, Adv. Math. Sci. Appl., 5 (1995), 67-89. 

[7]

A. Hoshiga, The existence of global solutions to systems of quasilinear wave equations with quadratic nonlinearities in $2$-dimensional space, Funkcial. Ekvac., 49 (2006), 357-384.  doi: 10.1619/fesi.49.357.

[8]

A. Hoshiga, The existence of the global solutions to semilinear wave equations with a class of cubic nonlinearities in $2$-dimensional space, Hokkaido Math. J., 37 (2008), 669-688.  doi: 10.14492/hokmj/1249046363.

[9]

A. Hoshiga and H. Kubo, Global small amplitude solutions of nonlinear hyperbolic systems with a critical exponent under the null condition, SIAM J. Math. Anal., 31 (2000), 486-513.  doi: 10.1137/S0036141097326064.

[10]

S. Katayama, Global existence and asymptotic behavior of solutions to systems of semilinear wave equations in two space dimensions, Hokkaido J. Math., 37 (2008), 689-714.  doi: 10.14492/hokmj/1249046364.

[11]

S. Katayama, Asymptotic pointwise behavior for systems of semilinear wave equations in three space dimensions, J. Hyperbolic Differ. Equ., 9 (2012), 263-323. 

[12]

S. Katayama, Global Solutions and the Asymptotic Behavior for Nonlinear Wave Equations with Small Initial Data, MSJ Memoirs, Math. Soc. Japan, Tokyo, 2017.

[13]

S. Katayama, Remarks on the asymptotic behavior of global solutions to systems of semilinear wave equations, in Asymptotic Analysis for Nonlinear Dispersive and Wave Equations, Math. Soc. Japan, Tokyo, (2019), 55–84. doi: 10.2969/aspm/08110055.

[14]

S. KatayamaT. Matoba and H. Sunagawa, Semilinear hyperbolic systems violating the null condition, Math. Ann., 31 (2015), 275-312.  doi: 10.1007/s00208-014-1071-1.

[15]

S. KatayamaA. Matsumura and H. Sunagawa, Energy decay for systems of semilinear wave equations with dissipative structure in two space dimensions, NoDEA Nonlinear Differ. Equ. Appl., 22 (2015), 601-628.  doi: 10.1007/s00030-014-0297-7.

[16]

S. KatayamaD. Murotani and H. Sunagawa, The energy decay and asymptotics for a class of semilinear wave equations in two space dimensions, J. Evol. Equ., 12 (2012), 891-916.  doi: 10.1007/s00028-012-0160-4.

[17]

S. Klainerman, The null condition and global existence to nonlinear wave equations, in Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1, Lectures in Appl. Math., AMS, Providence, (1986), 293-326.

[18]

S. Klainerman, Remarks on the global Sobolev inequalities in the Minkowski space $ {\mathbb R}^{n+1}$, Comm. Pure Appl. Math., 40 (1987), 111-117.  doi: 10.1002/cpa.3160400105.

[19]

M. Kovalyov, Resonance-type behaviour in a system of nonlinear wave equations, J. Differ. Equ., 77 (1989), 73-83.  doi: 10.1016/0022-0396(89)90157-5.

[20]

H. Kubo, Asymptotic behavior of solutions to semilinear wave equations with dissipative structure, Discrete Contin. Dynam. Systems, Supplement Volume, 2007 (2007), 602–613.

[21]

H. Kubo, Modification of the vector-field method related to quadratically perturbed wave equations in two space dimensions, in Asymptotic Analysis for Nonlinear Dispersive and Wave Equations, Math. Soc. Japan, Tokyo, (2019), 139–172 doi: 10.2969/aspm/08110139.

[22]

H. Lindblad and I. Rodnianski, The weak null condition for Einstein's equations, C. R. Math. Acad. Sci. Paris, 336 (2003), 901-906.  doi: 10.1016/S1631-073X(03)00231-0.

[23]

Y. Nishii and H. Sunagawa, Agemi type structural condition for systems of semilinear wave equations, J. Hyperbolic Differ. Equ., 17 (2020), 459-473.  doi: 10.1142/S0219891620500125.

[24]

Y. Nishii, H. Sunagawa and H. Terashita, Energy decay for small solutions to semilinear wave equations with weakly dissipative structure, J. Math. Soc. Japan, 73 (2021), 767–779. . doi: 10.2969/jmsj/84148414.

[25]

T. C. Sideris and S. Tu, Global existence for systems of nonlinear wave equations in $3$D with multiple speeds, SIAM J. Math. Anal., 33 (2001), 477-488.  doi: 10.1137/S0036141000378966.

[26]

K. Yokoyama, Global existence of classical solutions to systems of wave equations with critical nonlinearity in three space dimensions, J. Math. Soc. Japan, 52 (2000), 609-632.  doi: 10.2969/jmsj/05230609.

[1]

Hideo Kubo. Global existence for exterior problems of semilinear wave equations with the null condition in $2$D. Evolution Equations and Control Theory, 2013, 2 (2) : 319-335. doi: 10.3934/eect.2013.2.319

[2]

Kunio Hidano, Kazuyoshi Yokoyama. Global existence and blow up for systems of nonlinear wave equations related to the weak null condition. Discrete and Continuous Dynamical Systems, 2022, 42 (9) : 4385-4414. doi: 10.3934/dcds.2022058

[3]

Kunio Hidano, Dongbing Zha. Remarks on a system of quasi-linear wave equations in 3D satisfying the weak null condition. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1735-1767. doi: 10.3934/cpaa.2019082

[4]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[5]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure and Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[6]

Boyan Jonov, Thomas C. Sideris. Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1407-1442. doi: 10.3934/cpaa.2015.14.1407

[7]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[8]

Ait Ben Hassi El Mustapha, Fadili Mohamed, Maniar Lahcen. On Algebraic condition for null controllability of some coupled degenerate systems. Mathematical Control and Related Fields, 2019, 9 (1) : 77-95. doi: 10.3934/mcrf.2019004

[9]

Dongbing Zha, Yi Zhou. The lifespan for quasilinear wave equations with multiple propagation speeds in four space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1167-1186. doi: 10.3934/cpaa.2014.13.1167

[10]

Abdelaziz Khoutaibi, Lahcen Maniar, Omar Oukdach. Null controllability for semilinear heat equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1525-1546. doi: 10.3934/dcdss.2022087

[11]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial and Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

[12]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[13]

Umberto Biccari, Mahamadi Warma. Null-controllability properties of a fractional wave equation with a memory term. Evolution Equations and Control Theory, 2020, 9 (2) : 399-430. doi: 10.3934/eect.2020011

[14]

Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393

[15]

Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations and Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026

[16]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[17]

Piero Montecchiari, Paul H. Rabinowitz. A nondegeneracy condition for a semilinear elliptic system and the existence of 1- bump solutions. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6995-7012. doi: 10.3934/dcds.2019241

[18]

Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure and Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953

[19]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091

[20]

Chunyan Zhao, Chengkui Zhong, Zhijun Tang. Asymptotic behavior of the wave equation with nonlocal weak damping, anti-damping and critical nonlinearity. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022025

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (131)
  • HTML views (52)
  • Cited by (0)

Other articles
by authors

[Back to Top]