[1]
|
V. S. Afraimovich, S-B Hsu and H. E. Lin, Chaotic behavior of three competing species of May–Leonard model under small periodic perturbations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 435-447.
doi: 10.1142/S021812740100216X.
|
[2]
|
M. A. D. Aguiar, S. B. S. D. Castro and I. S. Labouriau, Dynamics near a heteroclinic network, Nonlinearity, 18 (2005), 391-414.
doi: 10.1088/0951-7715/18/1/019.
|
[3]
|
A. L. Bertozzi, Heteroclinic orbits and chaotic dynamics in planar fluid flows, SIAM J. Math. Anal., 19 (1988), 1271-1294.
doi: 10.1137/0519093.
|
[4]
|
H. Broer, C. Simó and J. C. Tatjer, Towards global models near homoclinic tangencies of dissipative diffeomorphisms, Nonlinearity, 11 (1998), 667-770.
doi: 10.1088/0951-7715/11/3/015.
|
[5]
|
F. Chen, A. Oksasoglu and Q. Wang, Heteroclinic tangles in time-periodic equations, J. Diff. Eqs., 254 (2013), 1137-1171.
doi: 10.1016/j.jde.2012.10.010.
|
[6]
|
S-N. Chow and J. Hale, Methods of Bifurcation Theory, Grundlehren der mathematischen Wissenschaften, Springer-Verlag New York-Berlin, 1982.
doi: 10.1007/978-1-4613-8159-4.
|
[7]
|
N. K. Gavrilov and L. P. Shilnikov, On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve–Part II, Math. USSR Sbornik, 254 (1973), 139-156.
doi: 10.1070/SM1972v017n04ABEH001597.
|
[8]
|
J. Guckenheimer and P. Holmes,, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Science, Springer-Verlag, 1983.
doi: 10.1007/978-1-4612-1140-2.
|
[9]
|
M. Herman, Mesure de Lebesgue et Nombre de Rotation, Lecture Notes in Math., 597 (1977), 271–293.
doi: 10.1007/BFb0085359.
|
[10]
|
I. S. Labouriau and A. A. P. Rodrigues, On Takens' Last Problem: tangencies and time averages near heteroclinic networks, Nonlinearity, 30 (2017), 1876-1910.
doi: 10.1088/1361-6544/aa64e9.
|
[11]
|
V. K. Melnikov, On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc., 12 (1963), 1-57.
|
[12]
|
A. Mohapatra and W. Ott, Homoclinic Loops, Heteroclinic Cycles, and Rank One Dynamics, SIAM J. Appl. Dyn. Syst., 14 (2015), 107-131.
doi: 10.1137/140995659.
|
[13]
|
L. Mora and M. Viana, Abundance of strange attractors, Acta Math., 171 (1993), 1-71.
doi: 10.1007/BF02392766.
|
[14]
|
S. E. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., 50 (1979), 101-151.
doi: 10.1007/BF02684771.
|
[15]
|
W. Ott and Q. Wang, Periodic attractors versus nonuniform expansion in singular limits of families of rank one maps, Discrete Contin. Dyn. Syst., 26 (2010), 1035-1054.
doi: 10.3934/dcds.2010.26.1035.
|
[16]
|
H. Poincaré, Les méthodes nouvelles de la mécanique céleste - Tome III, New methods of celestial mechanics. Vol. III, 26 Gauthier-Villars: Paris, (1899).
|
[17]
|
A. A.P. Rodrigues, "Large" strange attractors in the unfolding of a heteroclinic attractor, Discrete Contin. Dyn. Syst., 42 (2022), 2355-2379.
doi: 10.3934/dcds.2021193.
|
[18]
|
A. A. P. Rodrigues, I. S. Labouriau and M. A. D. Aguiar, Chaotic double cycling, Dyn. Sys. Int. J., 26 (2011), 199-233.
doi: 10.1080/14689367.2011.557179.
|
[19]
|
L. P. Shilnikov, On the question of the structure of an extended neighborhood of a structurally stable state of equilibrium of saddle-focus type, Math. USSR Sb., 81 (1970), 92-103.
doi: 10.1070/SM1970v010n01ABEH001588.
|
[20]
|
L. P. Shilnikov, A. Shilnikov, D. Turaev and L. Chua, Methods of Qualitative Theory In Nonlinear Dynamics–Part II, World Sci. Singapore, New Jersey, London, Hong Kong, 2001.
doi: 10.1142/4221.
|
[21]
|
S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 474-517.
|
[22]
|
H. Takahasi and Q. Wang., Nonuniformly expanding 1d maps with logarithmic singularities, Nonlinearity, 25 (2012), 533-550.
doi: 10.1088/0951-7715/25/2/533.
|
[23]
|
F. Takens, Heteroclinic attractors: time averages and moduli of topological conjugacy, Bull. Braz. Math. Soc., 25 (1994), 107-120.
doi: 10.1137/0152085.
|
[24]
|
Q. Wang and A. Oksasoglu, Dynamics of homoclinic tangles in periodically perturbed second-order equations, J. Diff. Eqs., 250 (2011), 710-751.
doi: 10.1016/j.jde.2010.04.005.
|
[25]
|
Q. Wang and W. Ott, Dissipative homoclinic loops of two-dimensional maps and strange attractors with one direction of instability, Comm. Pure Appl. Math., 64 (2011), 1439-1496.
doi: 10.1002/CPA.20379.
|
[26]
|
Q. Wang and L.-S. Young, From invariant curves to strange attractors, Commun. Math. Phys., 225 (2002), 225-275.
doi: 10.1007/s002200100582.
|
[27]
|
Q. Wang and L.-S. Young, Strange attractors in periodically-kicked limit cycles and Hopf bifurcations, Commun. Math. Phys., 240 (2003), 509-529.
doi: 10.1007/s00220-003-0902-9.
|
[28]
|
Q. Wang and L.-S. Young, Nonuniformly expanding 1D maps, Commun. Math. Phys., 264 (2006), 255-282.
doi: 10.1007/s00220-005-1485-4.
|