October  2022, 21(10): 3247-3261. doi: 10.3934/cpaa.2022098

Multiplicity of periodic solutions for second-order perturbed Hamiltonian systems with local superquadratic conditions

1. 

School of Mathematics, Tianjin University, Tianjin, 300354, China

2. 

School of Mathematics, Tianjin University, Tianjin Key Laboratory of Brain-Inspired Intelligence Technology, Tianjin, 300354, China

* Corresponding author: Fei Guo

Received  July 2020 Revised  March 2022 Published  October 2022 Early access  June 2022

Fund Project: The second author is supported by National Natural Science Foundation of China (12171355) and Elite Scholar Program in Tianjin University, P.R.China

Consider the following second-order perturbed Hamiltonian systems
$ \left\{\begin{array}{l}{\ddot{u}(t)+\nabla_u F(t,u)=\nabla_{u}G(t,u),\quad t\in{\bf{R}},} \\ {u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=\bf0,\quad T>0,}\end{array}\right. $
where
$ F(t,u)=-K(t,u)+W(t,u) $
,
$ K $
,
$ W $
are measurable and
$ T- $
periodic in
$ t $
for all
$ u\in\bf{R}^N $
, continuously differentiable in
$ u $
for a.e.
$ t\in[0,T] $
and even in
$ u $
,
$ G\in C^1\left(\bf{R}\times\bf{R}^N,\bf{R}\right) $
is also
$ T- $
periodic in
$ t $
, but
$ G $
maybe has no parity in
$ u $
. Assume that
$ W $
is local superquadratic and
$ G $
is subquadratic at the infinity and
$ K $
satisfies "pinched" condition, the existence of infinitely many weak periodic solutions for above perturbed systems is obtained via the Bolle's perturbation method, which generalizes and improves some previous results.
Citation: Yan Liu, Fei Guo. Multiplicity of periodic solutions for second-order perturbed Hamiltonian systems with local superquadratic conditions. Communications on Pure and Applied Analysis, 2022, 21 (10) : 3247-3261. doi: 10.3934/cpaa.2022098
References:
[1]

A. Bahri and H. Berestycki, A Perturbation Method in Critical Point Theory and Applications, Trans. Amer. Math. Soc., 267 (1981), 1-32.  doi: 10.2307/1998565.

[2]

P. Bolle, On the Bolza problem, J. Differ. Equ., 152 (1999), 274-288.  doi: 10.1006/jdeq.1998.3484.

[3]

P. BolleN. Ghoussoub and H. Tehrani, The multiplicity of solutions in non-homogeneous boundary value problems, Manuscripta Math., 101 (2000), 325-350.  doi: 10.1007/s002290050219.

[4]

G. Fei, On periodic solutions of superquadratic Hamiltonian systems, Electron. J. Differ. Equ., 2002 (2002), 225-228. 

[5]

Y. Liu and F. Guo, Multiplicity of periodic solutions for a class of second-order perturbed Hamiltonian systems, J. Math. Anal. Appl., 491 (2020), 1-14.  doi: 10.1016/j.jmaa.2020.124386.

[6]

Y. Long, Multiple solutions of perturbed superquadratic second order Hamiltonian systems, Trans. Amer. Math. Soc., 311 (1989), 749-780.  doi: 10.2307/2001151.

[7]

Y. Long, Index Theory for Symplectic Paths with Applications, Birkhäuser Verlag, Basel, 2002. doi: 10.1007/978-3-0348-8175-3.

[8]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2061-7.

[9]

P. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184.  doi: 10.1002/cpa.3160310203.

[10]

P. Rabinowitz, Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc., 272 (1982), 753-769.  doi: 10.2307/1998726.

[11]

P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. 65, American Mathemayical Society, Providence, 1986. doi: 10.1090/cbms/065.

[12]

A. Salvatore, Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems, Discrete Contin. Dyn. Syst., 2003 (2003), 778-787. 

[13]

A. Salvatore, Multiple solutions for perturbed elliptic equations in unbounded domains, Adv. Nonlinear Stud., 3 (2003), 1-23.  doi: 10.1515/ans-2003-0101.

[14]

M. Schechter, Periodic solutions of second-order nonautonomous dynamical systems, J. Differ. Equ., 223 (2006), 290-302.  doi: 10.1016/j.jde.2005.02.022.

[15]

M. Struwe, Variational methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, New York, 2000. doi: 10.1007/978-3-540-74013-1.

[16]

Z. TaoS. Yan and S. Wu, Periodic solutions for a class of superquadratic Hamiltonian systems, J. Math. Anal. Appl., 331 (2007), 152-158.  doi: 10.1016/j.jmaa.2006.08.041.

[17]

Z. Wang and J. Zhang, New existence results on periodic solutions of non-autonomous second order Hamiltonian systems, Appl. Math. Lett., 79 (2018), 43-50.  doi: 10.1016/j.aml.2017.11.016.

[18]

Z. WangJ. Zhang and Z. Zhang, Periodic solutions of second order non-autonomous Hamiltonian systems with local superquadratic potential, Nonlinear Anal., 70 (2009), 3672-3681.  doi: 10.1016/j.na.2008.07.023.

[19]

Y. Yi and C. Tang, Infinitely many periodic solutions of non-autonomous second-order Hamiltonian systems, Proc. Roy. Soc. Edinb. Sect. A, 144 (2014), 205-223.  doi: 10.1017/S0308210512001461.

[20]

L. ZhangX. Tang and Y. Chen, Infinitely many homoclinic solutions for a class of indefinite perturbed second-order Hamiltonian systems, I, Mediterr. J. Math., 13 (2016), 3673-3690.  doi: 10.1007/s00009-016-0708-6.

[21]

Q. Zhang and C. Liu, Infinitely many periodic solutions for second order Hamiltonian systems, J. Differ. Equ., 251 (2011), 816-833.  doi: 10.1016/j.jde.2011.05.021.

[22]

Q. Zhang and X. Tang, New existence of periodic solutions for second order non-autonomous Hamiltonian systems, J. Math. Anal. Appl., 369 (2010), 357-367.  doi: 10.1016/j.jmaa.2010.03.033.

show all references

References:
[1]

A. Bahri and H. Berestycki, A Perturbation Method in Critical Point Theory and Applications, Trans. Amer. Math. Soc., 267 (1981), 1-32.  doi: 10.2307/1998565.

[2]

P. Bolle, On the Bolza problem, J. Differ. Equ., 152 (1999), 274-288.  doi: 10.1006/jdeq.1998.3484.

[3]

P. BolleN. Ghoussoub and H. Tehrani, The multiplicity of solutions in non-homogeneous boundary value problems, Manuscripta Math., 101 (2000), 325-350.  doi: 10.1007/s002290050219.

[4]

G. Fei, On periodic solutions of superquadratic Hamiltonian systems, Electron. J. Differ. Equ., 2002 (2002), 225-228. 

[5]

Y. Liu and F. Guo, Multiplicity of periodic solutions for a class of second-order perturbed Hamiltonian systems, J. Math. Anal. Appl., 491 (2020), 1-14.  doi: 10.1016/j.jmaa.2020.124386.

[6]

Y. Long, Multiple solutions of perturbed superquadratic second order Hamiltonian systems, Trans. Amer. Math. Soc., 311 (1989), 749-780.  doi: 10.2307/2001151.

[7]

Y. Long, Index Theory for Symplectic Paths with Applications, Birkhäuser Verlag, Basel, 2002. doi: 10.1007/978-3-0348-8175-3.

[8]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2061-7.

[9]

P. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184.  doi: 10.1002/cpa.3160310203.

[10]

P. Rabinowitz, Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc., 272 (1982), 753-769.  doi: 10.2307/1998726.

[11]

P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. 65, American Mathemayical Society, Providence, 1986. doi: 10.1090/cbms/065.

[12]

A. Salvatore, Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems, Discrete Contin. Dyn. Syst., 2003 (2003), 778-787. 

[13]

A. Salvatore, Multiple solutions for perturbed elliptic equations in unbounded domains, Adv. Nonlinear Stud., 3 (2003), 1-23.  doi: 10.1515/ans-2003-0101.

[14]

M. Schechter, Periodic solutions of second-order nonautonomous dynamical systems, J. Differ. Equ., 223 (2006), 290-302.  doi: 10.1016/j.jde.2005.02.022.

[15]

M. Struwe, Variational methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, New York, 2000. doi: 10.1007/978-3-540-74013-1.

[16]

Z. TaoS. Yan and S. Wu, Periodic solutions for a class of superquadratic Hamiltonian systems, J. Math. Anal. Appl., 331 (2007), 152-158.  doi: 10.1016/j.jmaa.2006.08.041.

[17]

Z. Wang and J. Zhang, New existence results on periodic solutions of non-autonomous second order Hamiltonian systems, Appl. Math. Lett., 79 (2018), 43-50.  doi: 10.1016/j.aml.2017.11.016.

[18]

Z. WangJ. Zhang and Z. Zhang, Periodic solutions of second order non-autonomous Hamiltonian systems with local superquadratic potential, Nonlinear Anal., 70 (2009), 3672-3681.  doi: 10.1016/j.na.2008.07.023.

[19]

Y. Yi and C. Tang, Infinitely many periodic solutions of non-autonomous second-order Hamiltonian systems, Proc. Roy. Soc. Edinb. Sect. A, 144 (2014), 205-223.  doi: 10.1017/S0308210512001461.

[20]

L. ZhangX. Tang and Y. Chen, Infinitely many homoclinic solutions for a class of indefinite perturbed second-order Hamiltonian systems, I, Mediterr. J. Math., 13 (2016), 3673-3690.  doi: 10.1007/s00009-016-0708-6.

[21]

Q. Zhang and C. Liu, Infinitely many periodic solutions for second order Hamiltonian systems, J. Differ. Equ., 251 (2011), 816-833.  doi: 10.1016/j.jde.2011.05.021.

[22]

Q. Zhang and X. Tang, New existence of periodic solutions for second order non-autonomous Hamiltonian systems, J. Math. Anal. Appl., 369 (2010), 357-367.  doi: 10.1016/j.jmaa.2010.03.033.

Figure 1.  Schematic Diagram of Λm
[1]

Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053

[2]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[3]

Juhong Kuang, Weiyi Chen, Zhiming Guo. Periodic solutions with prescribed minimal period for second order even Hamiltonian systems. Communications on Pure and Applied Analysis, 2022, 21 (1) : 47-59. doi: 10.3934/cpaa.2021166

[4]

Dong-Lun Wu, Chun-Lei Tang, Xing-Ping Wu. Existence and nonuniqueness of homoclinic solutions for second-order Hamiltonian systems with mixed nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (1) : 57-72. doi: 10.3934/cpaa.2016.15.57

[5]

Xiaoping Wang. Ground state homoclinic solutions for a second-order Hamiltonian system. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2163-2175. doi: 10.3934/dcdss.2019139

[6]

Addolorata Salvatore. Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 778-787. doi: 10.3934/proc.2003.2003.778

[7]

Norimichi Hirano, Zhi-Qiang Wang. Subharmonic solutions for second order Hamiltonian systems. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 467-474. doi: 10.3934/dcds.1998.4.467

[8]

Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022

[9]

Xuan Wu, Huafeng Xiao. Periodic solutions for a class of second-order differential delay equations. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4253-4269. doi: 10.3934/cpaa.2021159

[10]

Zhiming Guo, Xiaomin Zhang. Multiplicity results for periodic solutions to a class of second order delay differential equations. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1529-1542. doi: 10.3934/cpaa.2010.9.1529

[11]

Xingyong Zhang, Xianhua Tang. Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems. Communications on Pure and Applied Analysis, 2014, 13 (1) : 75-95. doi: 10.3934/cpaa.2014.13.75

[12]

Oleg Makarenkov, Paolo Nistri. On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes. Communications on Pure and Applied Analysis, 2008, 7 (1) : 49-61. doi: 10.3934/cpaa.2008.7.49

[13]

Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835

[14]

Rubén Figueroa, Rodrigo López Pouso, Jorge Rodríguez–López. Existence and multiplicity results for second-order discontinuous problems via non-ordered lower and upper solutions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 617-633. doi: 10.3934/dcdsb.2019257

[15]

Cyril Joel Batkam. Homoclinic orbits of first-order superquadratic Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3353-3369. doi: 10.3934/dcds.2014.34.3353

[16]

Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765

[17]

Li-Li Wan, Chun-Lei Tang. Existence and multiplicity of homoclinic orbits for second order Hamiltonian systems without (AR) condition. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 255-271. doi: 10.3934/dcdsb.2011.15.255

[18]

Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745

[19]

Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial and Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171

[20]

Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial and Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (94)
  • HTML views (38)
  • Cited by (0)

Other articles
by authors

[Back to Top]