In this paper, we investigate the threshold results for a nonlocal and time-delayed reaction-diffusion system involving the spatial heterogeneity and the seasonality. Due to the complexity of the model, we rigorously analyze the well-posedness of the model. The basic reproduction number $ \Re_0 $ is characterized with the next generation operator method. We show that the disease-free $ \omega $-periodic solution is globally attractive when $ \Re_0 < 1 $; while the system is uniformly persistent and a positive $ \omega $-periodic solution exists when $ \Re_0 > 1 $. In a special case that the parameters are all independent of the spatial heterogeneity and the seasonality, the global attractivity of the constant equilibria of the model is investigated by the technique of Lyapunov functionals.
Citation: |
[1] |
L.J.S. Allen, B.M. Bolker, Y. Lou and A.L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.
doi: 10.3934/dcds.2008.21.1.![]() ![]() ![]() |
[2] |
A. Roobthaisong, K. Okada and N. Htun, et al., Molecular epidemiology of Cholera outbreaks during the rainy season in Mandalay, Myanmar, Am. J. Trop. Med. Hyg., 97 (2017), 1323-1328.
![]() |
[3] |
N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.
doi: 10.1007/s00285-006-0015-0.![]() ![]() ![]() |
[4] |
Z. Bai, R. Peng and X.-Q. Zhao, A reaction-diffusion malaria model with seasonality and incubation period, J. Math. Biol., 77 (2018), 201-228.
doi: 10.1007/s00285-017-1193-7.![]() ![]() ![]() |
[5] |
F. Brauer, S. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 10 (2013), 1335-1349.
doi: 10.3934/mbe.2013.10.1335.![]() ![]() ![]() |
[6] |
F. Capone, V. De Cataldis, R. De Luca and P. van den Driessche, Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol., 71 (2015), 1107-1131.
doi: 10.1007/s00285-014-0849-9.![]() ![]() ![]() |
[7] |
D. Danners and P. K. Medina, Abstract Evolution Equations, Peeriodic Problems and Applications, Pitman Research Notes in Mathematics Series, vol. 279. Chapman and Hall/CRC, London, 1992.
![]() ![]() |
[8] |
M.C. Eisenberg, Z. Shuai, D.L. Tien and P. van den Driessche, A cholera model in a patchy environment with water and human movement, Math. Biosci., 246 (2013), 105-112.
doi: 10.1016/j.mbs.2013.08.003.![]() ![]() ![]() |
[9] |
D.M. Hartley, J.G. Morris and D.L. Smith, Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidmeics?, PLoS Med., 3 (2006), 63-69.
![]() |
[10] |
S. Itô, Diffusion Equations, Translations of Mathematical Monographs, vol. 114. American Mathematical Society, Providence, 1992.
doi: 10.1090/mmono/114.![]() ![]() ![]() |
[11] |
X. Liang and X.-Q. Zhao, Asymptotic speeds of spreal and traveling waves for monotone semiflows with applications, Commun. Pure. Appl. Math., 60 (2008), 1-40.
doi: 10.1002/cpa.20154.![]() ![]() ![]() |
[12] |
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173.![]() ![]() ![]() |
[13] |
R.H. Martin, H.L. Smith and H. Gaff, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590.![]() ![]() ![]() |
[14] |
J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, vol. 68. Springer, New York, 1986.
doi: 10.1007/978-3-642-93287-8_2.![]() ![]() ![]() |
[15] |
Z. Mukandavire, S. Liao and J. Wang, et al., Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe, Proc. Natl. Acad. Sci. USA., 108 (2011), 8767-8772.
![]() |
[16] |
R. L. M. Neilan, E. Schaefer and H. Gaff, et al., Modeling optimal intervention strategies for cholera, Bull. Math. Biol., 72 (2010), 2004-2018.
doi: 10.1007/s11538-010-9521-8.![]() ![]() ![]() |
[17] |
D. Posny and J. Wang, Modelling cholera in periodic environments, J. Biol. Dyn., 8 (2014), 1-19.
doi: 10.1080/17513758.2014.896482.![]() ![]() ![]() |
[18] |
D. Posny, J. Wang, Z. Mukandavire and C. Modnak, Analyzing transmission dynamics of cholera with public health interventions, Math. Biosci., 264 (2015), 38-53.
doi: 10.1016/j.mbs.2015.03.006.![]() ![]() ![]() |
[19] |
Z. Shuai and P. van den Driessche, Global dynamics of cholera models with differential infectivity, Math. Biosci., 234 (2011), 118-126.
doi: 10.1016/j.mbs.2011.09.003.![]() ![]() ![]() |
[20] |
H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870.![]() ![]() ![]() |
[21] |
H. R. Thieme, C. Castillo-Chavez and T. Kuniya, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?, SIAM. J. Appl. Math., 53 (1993), 1447-1479.
doi: 10.1137/0153068.![]() ![]() ![]() |
[22] |
J. Wang, R. Zhang and T. Kuniya, A note on dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 13 (2016), 227-247.
doi: 10.3934/mbe.2016.13.227.![]() ![]() ![]() |
[23] |
W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.
doi: 10.1137/120872942.![]() ![]() ![]() |
[24] |
X. Wang and J. Wang, Analysis of cholera epidemics with bacterial growth and spatial movement, J. Biol. Dyn., 9 (2015), 233-261.
doi: 10.1080/17513758.2014.974696.![]() ![]() ![]() |
[25] |
X. Wang, X.-Q. Zhao and J. Wang, A cholera epidemic model in a spatiotemporally heterogeneous environemnt, J. Math. Anal. Appl., 468 (2018), 893-912.
doi: 10.1016/j.jmaa.2018.08.039.![]() ![]() ![]() |
[26] |
World Health Organization, Cholera, 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/cholera.
![]() |
[27] |
Y. Wu and X. Zou, Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates, J. Differ. Equ., 264 (2018), 4989-5024.
doi: 10.1016/j.jde.2017.12.027.![]() ![]() ![]() |
[28] |
L. Zhang, Z. Wang and X.-Q. Zhao, Threshold dynamics of a time periodic reactin-diffusion epidemic model with latent period, J. Differ. Equ., 258 (2015), 3011-3036.
doi: 10.1016/j.jde.2014.12.032.![]() ![]() ![]() |
[29] |
X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Differ. Equ., 29 (2017), 67-82.
doi: 10.1007/s10884-015-9425-2.![]() ![]() ![]() |