October  2022, 21(10): 3309-3334. doi: 10.3934/cpaa.2022101

A remark on the well-posedness for a system of quadratic derivative nonlinear Schrödinger equations

1. 

Faculty of Education, University of Miyazaki, 1-1, Gakuenkibanadai-nishi, Miyazaki, 889-2192 Japan

2. 

Department of Mathematics, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan

3. 

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

*Corresponding author

Received  January 2022 Revised  May 2022 Published  October 2022 Early access  June 2022

Fund Project: This work was supported by JSPS KAKENHI Grant Numbers JP17K14220, JP20K14342, and JP21J00514

We consider the Cauchy problem for the system of quadratic derivative nonlinear Schrödinger equations, which was introduced by Colin and Colin (2004). In the previous paper, the authors (2021) determined the almost optimal Sobolev regularity to be well-posed in $ H^s ( \mathbb{R}^d) $ as long as we use the iteration argument. In this paper, we consider the well-posedness under the conditions where the flow map fails to be twice differentiable. To prove the well-posedness, we construct a modified energy and apply the energy method.

Citation: Hiroyuki Hirayama, Shinya Kinoshita, Mamoru Okamoto. A remark on the well-posedness for a system of quadratic derivative nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2022, 21 (10) : 3309-3334. doi: 10.3934/cpaa.2022101
References:
[1]

H. Bahouri and G. Perelman, Global well-posedness for the derivative nonlinear Schrödinger equation, Invent. math., (2022), 50 pp doi: 10.1007/s00222-022-01113-0.

[2]

I. Bejenaru, Quadratic nonlinear derivative Schrödinger equation. I, IMRP Int. Math. Res. Pap., 2006 (2006), 84 pp. doi: 10.1155/IMRP/2006/70630.

[3]

I. Bejenaru, Quadratic nonlinear derivative Schrödinger equations. Ⅱ, Trans. Amer. Math. Soc., 360 (2008), 5925-5957.  doi: 10.1090/S0002-9947-08-04471-1.

[4]

I. Bejenaru and D. Tataru, Large data local solutions for the derivative NLS equation, J. Eur. Math. Soc., 10 (2008), 957-985.  doi: 10.4171/JEMS/136.

[5]

J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A, 278 (1975), 555-601.  doi: 10.1098/rsta.1975.0035.

[6]

M. Christ, Illposedness of a Schrödinger equation with derivative nonlinearity, preprint (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.1363).

[7]

M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interactions, Differ. Integral Equ., 17 (2004), 297-330. 

[8]

M. Colin and T. Colin, A numerical model for the Raman amplification for laser-plasma interaction, J. Comput. Appl. Math., 193 (2006), 535-562.  doi: 10.1016/j.cam.2005.05.031.

[9]

M. ColinT. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Nonlinéaire., 6 (2009), 2211-2226.  doi: 10.1016/j.anihpc.2009.01.011.

[10]

A. Grünrock, On the Cauchy- and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations, preprint, arXiv: math/0006195.

[11]

M. Hayashi and T. Ozawa, Well-posedness for a generalized derivative nonlinear Schrödinger equation, J. Differ. Equ., 261 (2016), 5424-5445.  doi: 10.1016/j.jde.2016.08.018.

[12]

H. Hirayama, Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data, Commun. Pure Appl. Anal., 13 (2014), 1563-1591.  doi: 10.3934/cpaa.2014.13.1563.

[13]

H. Hirayama and S. Kinoshita, Sharp bilinear estimates and its application to a system of quadratic derivative nonlinear Schrödinger equations, Nonlinear Anal., 178 (2019), 205-226.  doi: 10.1016/j.na.2018.07.013.

[14]

H. HirayamaS. Kinoshita and and M. Okamoto, Well-posedness for a system of quadratic derivative nonlinear Schrödinger equations with radial initial data, Ann. H. Poincaré, 21 (2020), 2611-2636.  doi: 10.1007/s00023-020-00931-3.

[15]

H. Hirayama, S. Kinoshita and M. Okamoto, Well-posedness for a system of quadratic derivative nonlinear Schrödinger equations in almost critical spaces, J. Math. Anal. Appl., 499 (2021), 29 pp. doi: 10.1016/j. jmaa. 2021.125028.

[16] R. J. Iorio and V. M. Iorio, Fourier Analysis and Partial Differential Equations, Cambridge Studies in Advanced Mathematics, 70. Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511623745.
[17]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.

[18]

C. KenigG. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math., 134 (1998), 489-545.  doi: 10.1007/s002220050272.

[19]

R. Killip, M. Ntekoume and M. Visan, On the well-posedness problem for the derivative nonlinear Schrödinger equation, preprint, arXiv: 2101.12274

[20]

T. Ozawa, Finite energy solutions for the Schrödinger equations with quadratic nonlinearity in one space dimension, Funkcial. Ekvac., 41 (1998), 451-468. 

[21]

D. Pornnopparath, Small data well-posedness for derivative nonlinear Schrödinger equations, J. Differ. Equ., 265 (2018), 3792-3840.  doi: 10.1016/j.jde.2018.05.016.

show all references

References:
[1]

H. Bahouri and G. Perelman, Global well-posedness for the derivative nonlinear Schrödinger equation, Invent. math., (2022), 50 pp doi: 10.1007/s00222-022-01113-0.

[2]

I. Bejenaru, Quadratic nonlinear derivative Schrödinger equation. I, IMRP Int. Math. Res. Pap., 2006 (2006), 84 pp. doi: 10.1155/IMRP/2006/70630.

[3]

I. Bejenaru, Quadratic nonlinear derivative Schrödinger equations. Ⅱ, Trans. Amer. Math. Soc., 360 (2008), 5925-5957.  doi: 10.1090/S0002-9947-08-04471-1.

[4]

I. Bejenaru and D. Tataru, Large data local solutions for the derivative NLS equation, J. Eur. Math. Soc., 10 (2008), 957-985.  doi: 10.4171/JEMS/136.

[5]

J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A, 278 (1975), 555-601.  doi: 10.1098/rsta.1975.0035.

[6]

M. Christ, Illposedness of a Schrödinger equation with derivative nonlinearity, preprint (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.1363).

[7]

M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interactions, Differ. Integral Equ., 17 (2004), 297-330. 

[8]

M. Colin and T. Colin, A numerical model for the Raman amplification for laser-plasma interaction, J. Comput. Appl. Math., 193 (2006), 535-562.  doi: 10.1016/j.cam.2005.05.031.

[9]

M. ColinT. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Nonlinéaire., 6 (2009), 2211-2226.  doi: 10.1016/j.anihpc.2009.01.011.

[10]

A. Grünrock, On the Cauchy- and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations, preprint, arXiv: math/0006195.

[11]

M. Hayashi and T. Ozawa, Well-posedness for a generalized derivative nonlinear Schrödinger equation, J. Differ. Equ., 261 (2016), 5424-5445.  doi: 10.1016/j.jde.2016.08.018.

[12]

H. Hirayama, Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data, Commun. Pure Appl. Anal., 13 (2014), 1563-1591.  doi: 10.3934/cpaa.2014.13.1563.

[13]

H. Hirayama and S. Kinoshita, Sharp bilinear estimates and its application to a system of quadratic derivative nonlinear Schrödinger equations, Nonlinear Anal., 178 (2019), 205-226.  doi: 10.1016/j.na.2018.07.013.

[14]

H. HirayamaS. Kinoshita and and M. Okamoto, Well-posedness for a system of quadratic derivative nonlinear Schrödinger equations with radial initial data, Ann. H. Poincaré, 21 (2020), 2611-2636.  doi: 10.1007/s00023-020-00931-3.

[15]

H. Hirayama, S. Kinoshita and M. Okamoto, Well-posedness for a system of quadratic derivative nonlinear Schrödinger equations in almost critical spaces, J. Math. Anal. Appl., 499 (2021), 29 pp. doi: 10.1016/j. jmaa. 2021.125028.

[16] R. J. Iorio and V. M. Iorio, Fourier Analysis and Partial Differential Equations, Cambridge Studies in Advanced Mathematics, 70. Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511623745.
[17]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.

[18]

C. KenigG. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math., 134 (1998), 489-545.  doi: 10.1007/s002220050272.

[19]

R. Killip, M. Ntekoume and M. Visan, On the well-posedness problem for the derivative nonlinear Schrödinger equation, preprint, arXiv: 2101.12274

[20]

T. Ozawa, Finite energy solutions for the Schrödinger equations with quadratic nonlinearity in one space dimension, Funkcial. Ekvac., 41 (1998), 451-468. 

[21]

D. Pornnopparath, Small data well-posedness for derivative nonlinear Schrödinger equations, J. Differ. Equ., 265 (2018), 3792-3840.  doi: 10.1016/j.jde.2018.05.016.

Table 1.  Regularities to be well-posed when $ \kappa \neq 0 $
$ \kappa \neq 0 $ $ d=1 $ $ d=2 $ $ d=3 $ $ d \ge 4 $
$ \mu>0 $ $ s \ge 0 $ $ s \ge s_c $
$ \mu=0 $ $ s \ge 1 $
$ \mu<0 $ $ s \ge \frac 12 $ $ s>s_c $
$ \kappa \neq 0 $ $ d=1 $ $ d=2 $ $ d=3 $ $ d \ge 4 $
$ \mu>0 $ $ s \ge 0 $ $ s \ge s_c $
$ \mu=0 $ $ s \ge 1 $
$ \mu<0 $ $ s \ge \frac 12 $ $ s>s_c $
Table 2.  Regularities to be well-posed when $ \alpha= \beta $ and $ ( \alpha- \gamma)( \beta+ \gamma) \neq 0 $
$ d=1 $ $ d=2 $ $ d=3 $ $ d \ge 4 $
$ s \ge \frac 12 $ $ s>s_c $
$ d=1 $ $ d=2 $ $ d=3 $ $ d \ge 4 $
$ s \ge \frac 12 $ $ s>s_c $
[1]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[2]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[3]

Wei Yan, Yimin Zhang, Yongsheng Li, Jinqiao Duan. Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5825-5849. doi: 10.3934/dcds.2021097

[4]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[5]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[6]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[7]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205

[8]

Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082

[9]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations and Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[10]

Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075

[11]

Mohamad Darwich. Local and global well-posedness in the energy space for the dissipative Zakharov-Kuznetsov equation in 3D. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3715-3724. doi: 10.3934/dcdsb.2020087

[12]

M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573

[13]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[14]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure and Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[15]

Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072

[16]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[17]

Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010

[18]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[19]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[20]

Chao Yang. Sharp condition of global well-posedness for inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4631-4642. doi: 10.3934/dcdss.2021136

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (124)
  • HTML views (45)
  • Cited by (0)

[Back to Top]