[1]
|
H. Bahouri and G. Perelman, Global well-posedness for the derivative nonlinear Schrödinger equation, Invent. math., (2022), 50 pp
doi: 10.1007/s00222-022-01113-0.
|
[2]
|
I. Bejenaru, Quadratic nonlinear derivative Schrödinger equation. I, IMRP Int. Math. Res. Pap., 2006 (2006), 84 pp.
doi: 10.1155/IMRP/2006/70630.
|
[3]
|
I. Bejenaru, Quadratic nonlinear derivative Schrödinger equations. Ⅱ, Trans. Amer. Math. Soc., 360 (2008), 5925-5957.
doi: 10.1090/S0002-9947-08-04471-1.
|
[4]
|
I. Bejenaru and D. Tataru, Large data local solutions for the derivative NLS equation, J. Eur. Math. Soc., 10 (2008), 957-985.
doi: 10.4171/JEMS/136.
|
[5]
|
J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A, 278 (1975), 555-601.
doi: 10.1098/rsta.1975.0035.
|
[6]
|
M. Christ, Illposedness of a Schrödinger equation with derivative nonlinearity, preprint (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.1363).
|
[7]
|
M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interactions, Differ. Integral Equ., 17 (2004), 297-330.
|
[8]
|
M. Colin and T. Colin, A numerical model for the Raman amplification for laser-plasma interaction, J. Comput. Appl. Math., 193 (2006), 535-562.
doi: 10.1016/j.cam.2005.05.031.
|
[9]
|
M. Colin, T. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Nonlinéaire., 6 (2009), 2211-2226.
doi: 10.1016/j.anihpc.2009.01.011.
|
[10]
|
A. Grünrock, On the Cauchy- and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations, preprint, arXiv: math/0006195.
|
[11]
|
M. Hayashi and T. Ozawa, Well-posedness for a generalized derivative nonlinear Schrödinger equation, J. Differ. Equ., 261 (2016), 5424-5445.
doi: 10.1016/j.jde.2016.08.018.
|
[12]
|
H. Hirayama, Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data, Commun. Pure Appl. Anal., 13 (2014), 1563-1591.
doi: 10.3934/cpaa.2014.13.1563.
|
[13]
|
H. Hirayama and S. Kinoshita, Sharp bilinear estimates and its application to a system of quadratic derivative nonlinear Schrödinger equations, Nonlinear Anal., 178 (2019), 205-226.
doi: 10.1016/j.na.2018.07.013.
|
[14]
|
H. Hirayama, S. Kinoshita and and M. Okamoto, Well-posedness for a system of quadratic derivative nonlinear Schrödinger equations with radial initial data, Ann. H. Poincaré, 21 (2020), 2611-2636.
doi: 10.1007/s00023-020-00931-3.
|
[15]
|
H. Hirayama, S. Kinoshita and M. Okamoto, Well-posedness for a system of quadratic derivative nonlinear Schrödinger equations in almost critical spaces, J. Math. Anal. Appl., 499 (2021), 29 pp.
doi: 10.1016/j. jmaa. 2021.125028.
|
[16]
|
R. J. Iorio and V. M. Iorio, Fourier Analysis and Partial Differential Equations, Cambridge Studies in Advanced Mathematics, 70. Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511623745.
|
[17]
|
T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704.
|
[18]
|
C. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math., 134 (1998), 489-545.
doi: 10.1007/s002220050272.
|
[19]
|
R. Killip, M. Ntekoume and M. Visan, On the well-posedness problem for the derivative nonlinear Schrödinger equation, preprint, arXiv: 2101.12274
|
[20]
|
T. Ozawa, Finite energy solutions for the Schrödinger equations with quadratic nonlinearity in one space dimension, Funkcial. Ekvac., 41 (1998), 451-468.
|
[21]
|
D. Pornnopparath, Small data well-posedness for derivative nonlinear Schrödinger equations, J. Differ. Equ., 265 (2018), 3792-3840.
doi: 10.1016/j.jde.2018.05.016.
|