\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Almost Global Existence for 3-D Quasilinear Wave Equations in Exterior Domains with Neumann Boundary Conditions

The author is supported by Jiangsu Shuangchuang Program (No. JSSCBS20210901).

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We are concerned with the initial-boundary value problems of 3-D quasilinear wave equations outside compact convex obstacles with Neumann boundary conditions. When the surfaces of 3-D compact convex obstacles are smooth and the quadratic nonlinearities in the quasilinear wave equations do not fulfill the null condition, we establish the almost global existence of smooth small-amplitude solutions to the above initial-boundary value problems. The lower bound of the lifespan is proved to be $ e^{\kappa/\varepsilon} $ with some positive $ \kappa $ and the small positive parameter $ \varepsilon $ as the size of the initial data. This lower bound is optimal as shown in the 3-D boundaryless case.

    Mathematics Subject Classification: Primary: 35L05, 35L10, 35L20, 35L72.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] S. Alinhac, Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions II, Acta Math., 182 (1999), 1-23.  doi: 10.1007/BF02392822.
    [2] S. Alinhac, The null condition for quasilinear wave equations in two space dimension I, Invent. Math., 145 (2001), 597-618.  doi: 10.1007/s002220100165.
    [3] S. Alinhac, The null condition for quasilinear wave equations in two space dimensions II, Amer. J. Math., 123 (2001), 1071-1101. 
    [4] S. Alinhac, An example of blowup at infinity for a quasilinear wave equation, Astérisque, 284 (2003), 1-91. 
    [5] D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., 39 (1986), 267-282.  doi: 10.1002/cpa.3160390205.
    [6] D. Christodoulou and S. Miao, Compressible Flow and Euler's Equations, Surveys of Modern Mathematics, 9. International Press, Somerville, MA; Higher Education Press, Beijing, 2014.
    [7] B. B. DingY. B. Liu and H. C. Yin, The small data solutions of general 3D quasilinear wave equations. I, SIAM J. Math. Anal., 47 (2015), 4192-4228.  doi: 10.1137/151004793.
    [8] B. B. DingW. Ingo and H. C. Yin, The small data solutions of general 3D quasilinear wave equations. II, J. Differ. Equ., 261 (2016), 1429-1471.  doi: 10.1016/j.jde.2016.04.002.
    [9] Y. Du and Y. Zhou, The lifespan for nonlinear wave equation outside of star-shaped obstacle in three space dimensions, Comm. Partial Differ. Equ., 33 (2008), 1455-1486.  doi: 10.1080/03605300802026242.
    [10] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001.
    [11] P. Godin, Long time behaviour of solutions to some nonlinear rotation invariant mixed problems, Comm. Partial Differential Equations, 14 (1989), 299-374.  doi: 10.1080/03605308908820599.
    [12] P. Godin, Global existence of solutions to some exterior radial quasilinear Cauchy-Dirichlet problems, Amer. J. Math., 117 (1995), 1475-1505.  doi: 10.2307/2375027.
    [13] P. Godin, The lifespan of solutions of exterior radial quasilinear Cauchy-Neumann problems, J. Hyperbolic Differ. Equ., 5 (2008), 519-546.  doi: 10.1142/S0219891608001581.
    [14] L.Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications (Berlin) [Mathematics & Applications], 26. Springer-Verlag, Berlin, 1997.
    [15] F. John and S. Klainerman, Almost global existence to nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math., 37 (1984), 443-455.  doi: 10.1002/cpa.3160370403.
    [16] M. KeelH. F. Smith and C. D. Sogge, On global existence for nonlinear wave equations outside of convex obstacles, Amer. J. Math., 122 (2000), 805-842. 
    [17] M. KeelH. F. Smith and C. D. Sogge, Almost global existence for some semilinear wave equations, J. Anal. Math., 87 (2002), 265-279.  doi: 10.1007/BF02868477.
    [18] M. KeelH. F. Smith and C. D. Sogge, Global existence for a quasilinear wave equation outside of star-shaped domains, J. Funct. Anal., 189 (2002), 155-226.  doi: 10.1006/jfan.2001.3844.
    [19] M. KeelH. F. Smith and C. D. Sogge, Almost global existence for quasilinear wave equations in three space dimensions, J. Amer. Math. Soc., 17 (2004), 109-153.  doi: 10.1090/S0894-0347-03-00443-0.
    [20] S. Klainerman, The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), 293–326. Lectures in Appl. Math., 23, Amer. Math. Soc., Providence, RI, 1986.
    [21] S. Klainerman and T. C. Sideris, On almost global existence for nonrelativistic wave equations in 3D, Comm. Pure Appl. Math., 49 (1996), 307-321.  doi: 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H.
    [22] J. Li and H. C. Yin, Global smooth solutions of 3-D null-form wave equations in exterior domains with Neumann boundary conditions, J. Differ. Equ., 264 (2018), 5577-5628.  doi: 10.1016/j.jde.2018.01.015.
    [23] H. Lindblad, Global solutions of quasilinear wave equations, Amer. J. Math., 130 (2008), 115-157.  doi: 10.1353/ajm.2008.0009.
    [24] H. LindbladM. Nakamura and C. D. Sogge, Remarks on global solutions for nonlinear wave equations under the standard null conditions, J. Differ. Equ., 254 (2013), 1396-1436.  doi: 10.1016/j.jde.2012.10.022.
    [25] J. Metcalfe and C. D. Sogge, Hyperbolic trapped rays and global existence of quasilinear wave equations, Invent. Math., 159 (2005), 75-117.  doi: 10.1007/s00222-004-0383-2.
    [26] J. MetcalfeC. D. Sogge and A. Stewart, Nonlinear hyperbolic equations in infinite homogeneous waveguides, Comm. Partial Differ. Equ., 30 (2005), 643-661.  doi: 10.1081/PDE-200059267.
    [27] J. Metcalfe and C. D. Sogge, Long-time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods, SIAM J. Math. Anal., 38 (2006), 188-209.  doi: 10.1137/050627149.
    [28] J. Metcalfe and C. D. Sogge, Global existence of null-form wave equations in exterior domains, Math. Z., 256 (2007), 521-549.  doi: 10.1007/s00209-006-0083-2.
    [29] C. S. Morawetz, Decay for solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math., 28 (1975), 229-264.  doi: 10.1002/cpa.3160280204.
    [30] Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain, Math. Z., 191 (1986), 165-199.  doi: 10.1007/BF01164023.
    [31] Y. Shibata and G. Nakamura, On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order, Math. Z., 202 (1989), 1-64.  doi: 10.1007/BF01180683.
    [32] C. D. SoggeLectures on Nonlinear Wave Equation, Monographs in Analysis, II. International Press, Boston, MA, 1995. 
    [33] C. D. Sogge, Global existence for nonlinear wave equations with multiple speeds, in Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001. eds. W. Beckner, A. Nagel, A. Seeger and H.F. Smith), 353–366, Contemp. Math., 320, Amer. Math. Soc., Providence, RI, 2003. doi: 10.1090/conm/320/05618.
    [34] J. Speck, Shock Formation in Small-data Solutions to 3D Quasilinear Wave Equations, Mathematical Surveys and Monographs, 214. American Mathematical Society, Providence, RI, 2016. doi: 10.1090/surv/214.
  • 加载中
SHARE

Article Metrics

HTML views(2766) PDF downloads(236) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return