[1]
|
N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.
doi: 10.1007/s00285-006-0015-0.
|
[2]
|
C. Bowman, A. B. Gumel, P. van den Driessche, J. Wu and H. Zhu, A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol., 67 (2005), 1107-1133.
doi: 10.1016/j.bulm.2005.01.002.
|
[3]
|
J. Chen, J. Huang, J. C. Beier, R. S. Cantrell, C. Cosner, D. O. Fuller, G. Zhang and S. Ruan, Modeling and control of local outbreaks of West Nile virus in the United States, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2423-2449.
doi: 10.3934/dcdsb.2016054.
|
[4]
|
G. Cruz-Pacheco, L. Esteva, J. A. Montaño-Hirose and C. Vargas, Modelling the dynamics of West Nile Virus, Bull. Math. Biol., 67 (2005), 1157-1172.
doi: 10.1016/j.bulm.2004.11.008.
|
[5]
|
M. E. Danforth, W. K. Reisen and C. M. Barker, The impact of cycling temperature on the transmission of West Nile virus, J. Med. Entomol., 53 (2016), 681-686.
|
[6]
|
D. A. Ewing, C. A. Cobbold, B. V. Purse, M. A. Nunn and S. M. White, Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes, J. Theoret. Biol., 400 (2016), 65-79.
doi: 10.1016/j.jtbi.2016.04.008.
|
[7]
|
G. Fan, J. Liu, P. van den Driessche, J. Wu and H. Zhu, The impact of maturation delay of mosquitoes on the transmission of West Nile virus, Math. Biosci., 228 (2010), 119-126.
doi: 10.1016/j.mbs.2010.08.010.
|
[8]
|
K. P. Hadeler, R. Waldstätter and A. Wörz-Busekros, Models for pair formation in bisexual populations, J. Math. Biol., 26 (1988), 635-649.
doi: 10.1007/BF00276145.
|
[9]
|
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993.
doi: 10.1007/978-1-4612-4342-7.
|
[10]
|
D. M. Hartley, C. M. Barker, A. Le Menach, T. Niu, H. D. Gaff and W. K. Reisen, Effects of temperature on emergence and seasonality of West Nile virus in California, Am. J. Trop. Med. Hyg., 86 (2012), 884-894.
|
[11]
|
F. Li, J. Liu and X.-Q. Zhao, A West Nile virus model with vertical transmission and periodic time delays, J. Nonlinear Sci., 30 (2020), 449-486.
doi: 10.1007/s00332-019-09579-8.
|
[12]
|
X. Liang, L. Zhang and X.-Q. Zhao, Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease), J. Dynam. Differ. Equ., 31 (2019), 1247-1278.
doi: 10.1007/s10884-017-9601-7.
|
[13]
|
X. Liu, Y. Wang and X.-Q. Zhao, Dynamics of a climate-based periodic chikungunya model with incubation period, Appl. Math. Model., 80 (2020), 151-168.
doi: 10.1016/j.apm.2019.11.038.
|
[14]
|
Y. Lou and X.-Q. Zhao, A theoretical approach to understanding population dynamics with seasonal developmental durations, J. Nonlinear Sci., 27 (2017), 573-603.
doi: 10.1007/s00332-016-9344-3.
|
[15]
|
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173.
|
[16]
|
P. Moschini, D. Bisanzio and A. Pugliese, A seasonal model for West Nile virus, Math. Model. Nat. Phenom., 12 (2017), 58-83.
doi: 10.1051/mmnp/201712205.
|
[17]
|
D. Nash, F. Mostashari, A. Fine, J. Miller, D. O'Leary, K. Murray, A. Huang, A. Rosenberg, A. Greenberg, M. Sherman, S. Wong and M. Layton, The outbreak of West Nile virus infection in the New York City area in 1999, N. Engl. J. Med., 344 (2001), 1807-1814.
|
[18]
|
Z. Qiu, X. Wei, C. Shan and H. Zhu, Monotone dynamics and global behaviors of a West Nile virus model with mosquito demographics, J. Math. Biol., 80 (2020), 809-834.
doi: 10.1007/s00285-019-01442-4.
|
[19]
|
C. Shan, G. Fan and H. Zhu, Periodic phenomena and driving mechanisms in transmission of West Nile virus with maturation time, J. Dynam. Differ. Equ., 32 (2020), 1003-1026.
doi: 10.1007/s10884-019-09758-x.
|
[20]
|
H. L. Smith and P. Waltman, The Theory of the Chemostat, Dynamics of Microbial Cometition, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511530043.
|
[21]
|
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monographs, 41, Amer. Math. Soc., Providence, RI, 1995.
|
[22]
|
F.-B. Wang, R. Wu and X.-Q. Zhao, A West Nile virus transmission model with periodic incubation periods, SIAM J. Appl. Dyn. Syst., 18 (2019), 1498-1535.
doi: 10.1137/18M1236162.
|
[23]
|
X. Wang and X.-Q. Zhao, A malaria transmission model with temperature-dependent incubation period, Bull. Math. Biol., 79 (2017), 1155-1182.
doi: 10.1007/s11538-017-0276-3.
|
[24]
|
X. Wang and X.-Q. Zhao, Dynamics of a time-delayed Lyme disease model with seasonality, SIAM J. Appl. Dyn. Syst., 16 (2017), 853-881.
doi: 10.1137/16M1087916.
|
[25]
|
M. J. Wonham, T. de-Camino-Beck and M. A. Lewis, An epidemiological model for West Nile virus: invasion analysis and control applications, Proc. R. Soc. Lond. B., 271 (2004), 501-507.
|
[26]
|
X. Xu, Y. Xiao and R. A. Cheke, Models of impulsive culling of mosquitoes to interrupt transmission of West Nile virus to birds, Appl. Math. Model., 39 (2015), 3549-3568.
doi: 10.1016/j.apm.2014.10.072.
|
[27]
|
X.-Q. Zhao, Dynamical Systems in Population Biology, 2nd ed., Springer, New York, 2017.
doi: 10.1007/978-3-319-56433-3.
|
[28]
|
X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dynam. Differ. Equ., 29 (2017), 67-82.
doi: 10.1007/s10884-015-9425-2.
|