\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dynamics of a periodic West Nile virus model with mosquito demographics

  • * Corresponding author: Zhenguo Bai

    * Corresponding author: Zhenguo Bai 

This research was supported by the NSF of China (No. 11971369) and the Fundamental Research Funds for the Central Universities (No. JB210711).

Abstract / Introduction Full Text(HTML) Figure(6) / Table(1) Related Papers Cited by
  • In this paper, we propose a time-delayed model of West Nile virus with periodic extrinsic incubation period (EIP) and mosquito demographics including stage-structure, pair formation and intraspecific competition. We define two quantities $ \mathcal{R}_{\rm min} $ and $ \mathcal{R}_{\rm max} $ for mosquito population and the basic reproduction number $ \mathcal{R}_0 $ for our model. It is shown that the threshold dynamics are determined by these three parameters: (ⅰ) if $ \mathcal{R}_{\rm max}\leq 1 $, the mosquito population will not survive; (ⅱ) if $ \mathcal{R}_{\rm min}>1 $ and $ \mathcal{R}_0<1 $, then WNv disease will go extinct; (ⅲ) if $ \mathcal{R}_{\rm min}>1 $ and $ \mathcal{R}_0>1 $, then the disease will persist. Numerically, we simulate the long-term behaviors of solutions and reveal the influences of key model parameters on the disease transmission. A new finding is that $ \mathcal{R}_0 $ is non-monotone with respect to the fraction of the aquatic mosquitoes maturing into adult male mosquitoes, which can help us implement more effective control strategies. Besides we observe that using the time-averaged EIP has the possibility of underestimating the infection risk.

    Mathematics Subject Classification: Primary: 92D30, 37N25; Secondary: 34K13.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Flowchart of the WNv model

    Figure 2.  Long-term behaviors of infected mosquitoes and birds with $ \mathcal{R}_{\rm min} = 2.3226>1 $ and $ \mathcal{R}_0 = 1.1714>1 $. Initial conditions are $ A_M(\theta) = 8000, \; M_M(\theta) = 4000, \; S_M(\theta) = 2300, \; E_M(\theta) = 1000, \; I_M(\theta) = 700, \; B_S(\theta) = 900, \; B_I(\theta) = 100 $ for $ \theta\in[-\bar{\tau}, 0] $

    Figure 3.  Long-term behaviors of infected mosquitoes and birds with $ \mathcal{R}_{\rm min} = 1.3936>1 $ and $ \mathcal{R}_0 = 0.6248<1 $. Initial conditions are the same as in Fig. 2

    Figure 4.  The effects of $ q $ and $ \epsilon_M $ on $ \mathcal{R}_0 $. Left panel: $ \mathcal{R}_0 $ vs $ q $ on the range (0, 1). Right panel: $ \mathcal{R}_0 $ vs $ \epsilon_M $ on the range (0.1, 0.74)

    Figure 5.  Sensitivity analysis of $ \mathcal{R}_0 $ with respect to parameters

    Figure 6.  Comparison of the effects of $ a_0 $ and $ b_0 $ on $ \mathcal{R}_0 $ for different incubation period. Solid blue line represents $ \mathcal{R}_0 $ for time-varying incubation period $ \tau(t) $, and solid red line stands for $ \mathcal{R}_0 $ for time-averaged incubation period $ [\tau] $. Left panel: $ \mathcal{R}_0 $ vs $ a_0 $ for fixed $ b_0 = 0.51 $. Right panel: $ \mathcal{R}_0 $ vs $ b_0 $ for fixed $ a_0 = 1.076 $

    Table 1.  Parameter values in simulation

    Parameter Value (range) Dimension Resource
    $ \gamma_{M} $ 0.093 (0.051–0.093) $ \times $ 30.4 month$ ^{-1} $ [25]
    $ \Lambda_{B} $ 18000/12 birds $ \times $ month$ ^{-1} $ [11]
    $ \beta_{MB} $ 0.8 (0.8–1) dimensionless [25]
    $ \beta_{BM} $ 0.2 (0.02–0.24) dimensionless [25]
    $ \mu_{A} $ 0.4 (0.213–16.9) $ \times $ 30.4 month$ ^{-1} $ [25]
    $ \mu_{M} $ 0.025 (0.016–0.07) $ \times $ 30.4 month$ ^{-1} $ [25]
    $ \mu_{F} $ 0.025 (0.016–0.07) $ \times $ 30.4 month$ ^{-1} $ [25]
    $ \mu_{B} $ 30.4/1000 month$ ^{-1} $ [22]
    $ d_{B} $ 0.01 (0–0.5) $ \times $ 30.4 month$ ^{-1} $ [16]
     | Show Table
    DownLoad: CSV
  • [1] N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.  doi: 10.1007/s00285-006-0015-0.
    [2] C. BowmanA. B. GumelP. van den DriesscheJ. Wu and H. Zhu, A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol., 67 (2005), 1107-1133.  doi: 10.1016/j.bulm.2005.01.002.
    [3] J. ChenJ. HuangJ. C. BeierR. S. CantrellC. CosnerD. O. FullerG. Zhang and S. Ruan, Modeling and control of local outbreaks of West Nile virus in the United States, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2423-2449.  doi: 10.3934/dcdsb.2016054.
    [4] G. Cruz-PachecoL. EstevaJ. A. Montaño-Hirose and C. Vargas, Modelling the dynamics of West Nile Virus, Bull. Math. Biol., 67 (2005), 1157-1172.  doi: 10.1016/j.bulm.2004.11.008.
    [5] M. E. DanforthW. K. Reisen and C. M. Barker, The impact of cycling temperature on the transmission of West Nile virus, J. Med. Entomol., 53 (2016), 681-686. 
    [6] D. A. EwingC. A. CobboldB. V. PurseM. A. Nunn and S. M. White, Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes, J. Theoret. Biol., 400 (2016), 65-79.  doi: 10.1016/j.jtbi.2016.04.008.
    [7] G. FanJ. LiuP. van den DriesscheJ. Wu and H. Zhu, The impact of maturation delay of mosquitoes on the transmission of West Nile virus, Math. Biosci., 228 (2010), 119-126.  doi: 10.1016/j.mbs.2010.08.010.
    [8] K. P. HadelerR. Waldstätter and A. Wörz-Busekros, Models for pair formation in bisexual populations, J. Math. Biol., 26 (1988), 635-649.  doi: 10.1007/BF00276145.
    [9] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993. doi: 10.1007/978-1-4612-4342-7.
    [10] D. M. HartleyC. M. BarkerA. Le MenachT. NiuH. D. Gaff and W. K. Reisen, Effects of temperature on emergence and seasonality of West Nile virus in California, Am. J. Trop. Med. Hyg., 86 (2012), 884-894. 
    [11] F. LiJ. Liu and X.-Q. Zhao, A West Nile virus model with vertical transmission and periodic time delays, J. Nonlinear Sci., 30 (2020), 449-486.  doi: 10.1007/s00332-019-09579-8.
    [12] X. LiangL. Zhang and X.-Q. Zhao, Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease), J. Dynam. Differ. Equ., 31 (2019), 1247-1278.  doi: 10.1007/s10884-017-9601-7.
    [13] X. LiuY. Wang and X.-Q. Zhao, Dynamics of a climate-based periodic chikungunya model with incubation period, Appl. Math. Model., 80 (2020), 151-168.  doi: 10.1016/j.apm.2019.11.038.
    [14] Y. Lou and X.-Q. Zhao, A theoretical approach to understanding population dynamics with seasonal developmental durations, J. Nonlinear Sci., 27 (2017), 573-603.  doi: 10.1007/s00332-016-9344-3.
    [15] P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.
    [16] P. MoschiniD. Bisanzio and A. Pugliese, A seasonal model for West Nile virus, Math. Model. Nat. Phenom., 12 (2017), 58-83.  doi: 10.1051/mmnp/201712205.
    [17] D. NashF. MostashariA. FineJ. MillerD. O'LearyK. MurrayA. HuangA. RosenbergA. GreenbergM. ShermanS. Wong and M. Layton, The outbreak of West Nile virus infection in the New York City area in 1999, N. Engl. J. Med., 344 (2001), 1807-1814. 
    [18] Z. QiuX. WeiC. Shan and H. Zhu, Monotone dynamics and global behaviors of a West Nile virus model with mosquito demographics, J. Math. Biol., 80 (2020), 809-834.  doi: 10.1007/s00285-019-01442-4.
    [19] C. ShanG. Fan and H. Zhu, Periodic phenomena and driving mechanisms in transmission of West Nile virus with maturation time, J. Dynam. Differ. Equ., 32 (2020), 1003-1026.  doi: 10.1007/s10884-019-09758-x.
    [20] H. L. Smith and  P. WaltmanThe Theory of the Chemostat, Dynamics of Microbial Cometition, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511530043.
    [21] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monographs, 41, Amer. Math. Soc., Providence, RI, 1995.
    [22] F.-B. WangR. Wu and X.-Q. Zhao, A West Nile virus transmission model with periodic incubation periods, SIAM J. Appl. Dyn. Syst., 18 (2019), 1498-1535.  doi: 10.1137/18M1236162.
    [23] X. Wang and X.-Q. Zhao, A malaria transmission model with temperature-dependent incubation period, Bull. Math. Biol., 79 (2017), 1155-1182.  doi: 10.1007/s11538-017-0276-3.
    [24] X. Wang and X.-Q. Zhao, Dynamics of a time-delayed Lyme disease model with seasonality, SIAM J. Appl. Dyn. Syst., 16 (2017), 853-881.  doi: 10.1137/16M1087916.
    [25] M. J. WonhamT. de-Camino-Beck and M. A. Lewis, An epidemiological model for West Nile virus: invasion analysis and control applications, Proc. R. Soc. Lond. B., 271 (2004), 501-507. 
    [26] X. XuY. Xiao and R. A. Cheke, Models of impulsive culling of mosquitoes to interrupt transmission of West Nile virus to birds, Appl. Math. Model., 39 (2015), 3549-3568.  doi: 10.1016/j.apm.2014.10.072.
    [27] X.-Q. Zhao, Dynamical Systems in Population Biology, 2nd ed., Springer, New York, 2017. doi: 10.1007/978-3-319-56433-3.
    [28] X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dynam. Differ. Equ., 29 (2017), 67-82.  doi: 10.1007/s10884-015-9425-2.
  • 加载中

Figures(6)

Tables(1)

SHARE

Article Metrics

HTML views(2863) PDF downloads(227) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return