The classical Gagliardo-Nirenberg inequality was established in $ \mathbb{R}^n $. An extension to a bounded domain was given by Gagliardo in 1959. In this note, we present a simple proof of this result and prove a new Gagliardo-Nirenberg inequality in a bounded Lipschitz domain.
Citation: |
[1] |
N. Badr, Gagliardo-Nirenberg inequalities on manifolds, J. Math. Anal. Appl., 349 (2009), 493-502.
doi: 10.1016/j.jmaa.2008.09.013.![]() ![]() ![]() |
[2] |
R. D. Benguria, C. Vallejos and H. Van Den Bosch, Gagliardo-Nirenberg-Sobolev inequalities for convex domains in $\Bbb R^d$, Math. Res. Lett., 26 (2019), 1291-1312.
doi: 10.4310/MRL.2019.v26.n5.a3.![]() ![]() ![]() |
[3] |
H. Brezis and P. Mironescu, Gagliardo-Nirenberg inequalities and non-inequalities: the full story, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1355-1376.
doi: 10.1016/j.anihpc.2017.11.007.![]() ![]() ![]() |
[4] |
H. Brezis and P. Mironescu, Where Sobolev interacts with Gagliardo-Nirenberg, J. Funct. Anal., 277 (2-19), 2839-2864.
doi: 10.1016/j.jfa.2019.02.019.![]() ![]() ![]() |
[5] |
M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl. (9), 81 (2002), 847-875.
doi: 10.1016/S0021-7824(02)01266-7.![]() ![]() ![]() |
[6] |
J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature, J. Funct. Anal., 254 (2008), 593-611.
doi: 10.1016/j.jfa.2007.01.017.![]() ![]() ![]() |
[7] |
E. Gagliardo, Ulteriori proprietà di alcune classi di funzioni in più variabili, Ricerche Mat., 8 (1959), 24-51.
![]() ![]() |
[8] |
A. Kałamajska and K. Pietruska-Pałuba, Gagliardo-Nirenberg inequalities in weighted Orlicz spaces equipped with a nonnecessarily doubling measure, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 217-235.
![]() ![]() |
[9] |
T. Kopaliani and G. Chelidze, Gagliardo-Nirenberg type inequality for variable exponent Lebesgue spaces, J. Math. Anal. Appl., 356 (2009), 232-236.
doi: 10.1016/j.jmaa.2009.03.012.![]() ![]() ![]() |
[10] |
G. Leoni, A first course in Sobolev spaces, volume 181 of Graduate Studies in Mathematics, 2$^{nd}$ edition, American Mathematical Society, Providence, RI, 2017.
doi: 10.1090/gsm/181.![]() ![]() ![]() |
[11] |
H. A. Levine, An estimate for the best constant in a Sobolev inequality involving three integral norms, Ann. Mat. Pura Appl. (4), 124 (1980), 181-197.
doi: 10.1007/BF01795392.![]() ![]() ![]() |
[12] |
Y. Miyazaki, A short proof of the Gagliardo-Nirenberg inequality with BMO term, Proc. Amer. Math. Soc., 148 (2020), 4257-4261.
doi: 10.1090/proc/15048.![]() ![]() ![]() |
[13] |
L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 115-162.
![]() ![]() |
[14] |
L. Nirenberg, An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 20 (1966), 733-737.
![]() ![]() |
[15] |
L. G. Rogers, Degree-independent Sobolev extension on locally uniform domains, J. Funct. Anal., 235 (2006), 619-665.
doi: 10.1016/j.jfa.2005.11.013.![]() ![]() ![]() |
[16] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.
![]() ![]() |
[17] |
P. Strzelecki, Gagliardo-Nirenberg inequalities with a BMO term, Bull. London Math. Soc., 38 (2006), 294-300.
doi: 10.1112/S0024609306018169.![]() ![]() ![]() |