\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the almost sure scattering for the energy-critical cubic wave equation with supercritical data

The author is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) SFB 1283/2 2021 317210226.

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this article we study the defocusing energy-critical nonlinear wave equation on $ {\mathbb{R}}^4 $ with scaling supercritical data. We prove almost sure scattering for randomized initial data in $ H^s( {\mathbb{R}}^4) \times H^{s-1}( {\mathbb{R}}^4) $ with $ \frac{5}{6} < s < 1 $. The proof relies on new probabilistic estimates for the linear flow of the wave equation with randomized data, where the randomization is based on a unit-scale decomposition in frequency space, a decomposition in the angular variable, and a unit-scale decomposition of physical space. In particular, we show that the solution to the linear wave equation with randomized data almost surely belongs to $ L^1_t L^\infty_x $.

    Mathematics Subject Classification: Primary: 35L05; Secondary: 35R60, 35A01, 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131-175.  doi: 10.1353/ajm.1999.0001.
    [2] H. Bahouri and J. Shatah, Decay estimates for the critical semilinear wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 783-789.  doi: 10.1016/S0294-1449(99)80005-5.
    [3] I. Bejenaru and S. Herr, On global well-posedness and scattering for the massive Dirac-Klein-Gordon system, J. Eur. Math. Soc., 19 (2017), 2445-2467.  doi: 10.4171/JEMS/721.
    [4] Á. BényiT. Oh and O. Pocovnicu, On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbb{R}^d$, $d \geq 3$, Trans. Amer. Math. Soc. Ser. B, 2 (2015), 1-50.  doi: 10.1090/btran/6.
    [5] Á. Bényi, T. Oh and O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, in Excurions in Harmonic Analysis, vol. 4 of Appl. Numer. Harmon. Anal.
    [6] J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Commun. Math. Phys., 166 (1994), 1-26.  doi: 10.1007/BF02099299.
    [7] J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., 176 (1996), 421-445.  doi: 10.1007/BF02099556.
    [8] J. Brereton, Almost sure local well-posedness for the supercritical quintic NLS, Tunis. J. Math., 1 (2019), 427-453.  doi: 10.2140/tunis.2019.1.427.
    [9] B. Bringmann, Almost-sure scattering for the radial energy-critical nonlinear wave equation in three dimensions, Anal. Partial Differ. Equ., 13 (2020), 1011-1050.  doi: 10.2140/apde.2020.13.1011.
    [10] B. Bringmann, Almost sure scattering for the energy critical nonlinear wave equation, Amer. J. Math., 143 (2021), 1931-1982.  doi: 10.1353/ajm.2021.0050.
    [11] N. Burq and J. Krieger, Randomization improved Strichartz estimates and global well-posedness for supercritical data, Ann. Inst. Fourier, 71 (2021), 1929-1961.  doi: 10.5802/aif.3448.
    [12] N. Burq and G. Lebeau, Injections de Sobolev probabilistes et applications, Ann. Sci. Éc. Norm. Supér. (4), 46 (2013), 917-962. doi: 10.24033/asens.2206.
    [13] N. Burq and G. Lebeau, Probabilistic Sobolev embeddings, applications to eigenfunctions estimates, in Geometric and Spectral Analysis, vol. 630 of Contemp. Math. doi: 10.1090/conm/630/12672.
    [14] N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations I: local theory, Invent. Math., 173 (2008), 449-475.  doi: 10.1007/s00222-008-0124-z.
    [15] N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations II: a global existence result, Invent. Math., 173 (2008), 477-496.  doi: 10.1007/s00222-008-0123-0.
    [16] N. Burq and N. Tzvetkov, Probabilistic well-psedness for the cubic wave equation, J. Eur. Math. Soc., 16 (2014), 1-30.  doi: 10.4171/jems/426.
    [17] N. Camps, Scattering for the cubic Schrödinger equation in 3D with randomized radial initial data, arXiv preprint, arXiv: 2110.10752.
    [18] M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, arXiv: math/0311048.
    [19] A.-S. de Suzzoni, Large data low regularity scattering results for the wave equation on the Euclidean space, Commun. Partial Differ. Equ., 38 (2013), 1-49.  doi: 10.1080/03605302.2012.736910.
    [20] Y. Deng, Two-dimensional nonlinear Schrödinger equation with random radial data, Anal. Partial Differ. Equ., 5 (2012), 913-960.  doi: 10.2140/apde.2012.5.913.
    [21] B. DodsonJ. Lührmann and D. Mendelson, Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation, Adv. Math., 347 (2019), 619-676.  doi: 10.1016/j.aim.2019.02.001.
    [22] B. DodsonJ. Lührmann and D. Mendelson, Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data, Amer. J. Math., 142 (2020), 475-504.  doi: 10.1353/ajm.2020.0013.
    [23] J. GinibreA. Soffer and G. Velo, The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal., 110 (1992), 96-130.  doi: 10.1016/0022-1236(92)90044-J.
    [24] M. G. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. Math. (2), 132 (1990), 485-509.  doi: 10.2307/1971427.
    [25] R. KillipJ. Murphy and M. Visan, Almost sure scattering for the energy-critical NLS with radial data below ${H}^1(\mathbb{R}^4)$, Commun. Partial Differ. Equ., 44 (2019), 51-71.  doi: 10.1080/03605302.2018.1541904.
    [26] S. Klainerman and D. Tataru, On the optimal local regularity for the Yang-Mills equations in $ {\mathbb{R}}^{4+1}$, J. Amer. Math. Soc., 12 (1999), 93-116.  doi: 10.1090/S0894-0347-99-00282-9.
    [27] H. Lindblad and C. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., 130 (1995), 357-426.  doi: 10.1006/jfan.1995.1075.
    [28] J. Lührmann and D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on $ {\mathbb{R}}^3$, Comm. Partial Differ. Equ., 39 (2014), 2262-2283.  doi: 10.1080/03605302.2014.933239.
    [29] J. Murphy, Random data final-state problem for the mass-subcritical NLS in $L^2$, Proc. Amer. Math. Soc., 147 (2019), 339-350.  doi: 10.1090/proc/14275.
    [30] K. Nakanishi, Unique global existence and asymptotic behaviour of solutions for wave equations with non-coercive critical nonlinearity, Commun. Partial Differ. Equ., 24 (1999), 185-221.  doi: 10.1080/03605309908821420.
    [31] K. Nakanishi and T. Yamamoto, Randomized final-data problem for systems of nonlinear Schrödinger equations and the Gross-Pitaevskii equation, Math. Res. Lett., 26 (2019), 253-279.  doi: 10.4310/MRL.2019.v26.n1.a12.
    [32] T. OhM. Okamoto and O. Pocovnicu, On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities, Discrete Contin. Dyn. Syst., 39 (2019), 3479-3520.  doi: 10.3934/dcds.2019144.
    [33] T. Oh and O. Pocovnicu, Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on $ {\mathbb{R}}^3$, J. Math. Pures Appl., 105 (2016), 342-366.  doi: 10.1016/j.matpur.2015.11.003.
    [34] O. Pocovnicu, Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $ {\mathbb{R}}^d$, $d = 4$ and $5$, J. Eur. Math. Soc., 19 (2017), 2521-2575.  doi: 10.4171/JEMS/723.
    [35] A. PoiretD. Robert and L. Thomann, Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator, Anal. Partial Differ. Equ., 7 (2014), 997-1026.  doi: 10.2140/apde.2014.7.997.
    [36] J. Shatah and M. Struwe, Regularity results for nonlinear wave equations, Ann. Math. (2), 138 (1993), 503-518.  doi: 10.2307/2946554.
    [37] J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Int. Math. Res. Not., 1994 (1994), 303-309.  doi: 10.1155/S1073792894000346.
    [38] J. Shen, A. Soffer and Y. Wu, Almost sure scattering for the nonradial energy-critical NLS with arbitrary regularity in 3D and 4D cases, arXiv preprint, arXiv: 2111.11935.
    [39] J. Shen, A. Soffer and Y. Wu, Almost sure well-posedness and scattering of the 3D cubic nonlinear Schrödinger equation, arXiv preprint, arXiv: 2110.11648.
    [40] M. Spitz, Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data, arXiv preprint, arXiv: 2110.11051.
    [41] M. Spitz, Randomized final-state problem for the Zakharov system in dimension three, Commun. Partial Differ. Equ., 47 (2022), 346-377.  doi: 10.1080/03605302.2021.1983595.
    [42] E. M. Stein and  G. WeissIntroduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, New Jersey, 1971. 
    [43] J. Sterbenz, Angular regularity and Strichartz estimates for the wave equation, Int. Math. Res. Not., 2005 (2005), 187-231.  doi: 10.1155/IMRN.2005.187.
    [44] M. Struwe, Globally regular solutions to the $u^5$ Klein-Gordon equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15 (1988), 495-513. 
    [45] T. Tao, Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions, Dyn. Partial Differ. Equ., 3 (2006), 93-110.  doi: 10.4310/DPDE.2006.v3.n2.a1.
  • 加载中
SHARE

Article Metrics

HTML views(2378) PDF downloads(137) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return