In this paper, we consider the Finsler-Liouville equation with homogeneous Dirichlet boundary condition on a smooth bounded domain $ \Omega\subset \mathbb{R}^2 $. We deal with existence issues by using variational approach when $ \Omega $ has non-trivial topology. In particular, we generalize the Wang-Xia's results in [19].
Citation: |
[1] |
A. Alvino, V. Ferone, G. Trombetti and P. Lions, Convex symmetrization and applications, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 14 (1997), 275-293.
doi: 10.1016/S0294-1449(97)80147-3.![]() ![]() ![]() |
[2] |
M. Belloni, V. Ferone and B. Kawohl, Isoperimetric inequalities, wulffshape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys., 54 (2003), 771-783.
doi: 10.1007/s00033-003-3209-y.![]() ![]() ![]() |
[3] |
L. Battaglia, A. Jevnikar, A. Malchiodi and D. Ruiz, A general existence result for the Toda system on compact surfaces, Adv. Math., 285 (2015), 937-979.
doi: 10.1016/j.aim.2015.07.036.![]() ![]() ![]() |
[4] |
H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x)e^{u}$ in two dimensions, Commun. Partial Differ. Equ., 16 (1991), 1223-1253.
doi: 10.1080/03605309108820797.![]() ![]() ![]() |
[5] |
W. Chen and C. Li, Prescribing Gaussian curvatures on surfaces with conical singularities, J. Geom. Anal., 1 (1991), 359-372.
doi: 10.1007/BF02921311.![]() ![]() ![]() |
[6] |
C. C. Chen and C. S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), 1667-1727.
doi: 10.1002/cpa.10107.![]() ![]() ![]() |
[7] |
S. Y. A. Chang and P. Yang, Prescribing Gaussian curvature on $\mathbb{S}^2$, Acta Math., 159 (1987), 215-259.
doi: 10.1007/BF02392560.![]() ![]() ![]() |
[8] |
W. Ding, J. Jost, J. Li and G. Wang, Existence results for mean field equations, Ann. I. H. Poincare-AN., 16 (1999), 653-666.
doi: 10.1016/S0294-1449(99)80031-6.![]() ![]() ![]() |
[9] |
W. Ding, J. Jost, J. Li and G. Wang, The differential equation $\Delta u=8\pi-8\pi he^u$ on compact Riemann surface, Asian J. Math., 1 (1997), 230-248.
doi: 10.4310/AJM.1997.v1.n2.a3.![]() ![]() ![]() |
[10] |
Z. Djadli, Existence result for the mean field problem on Riemann surfaces of all genuses, Commun. Contemp. Math., 10 (2008), 205-220.
doi: 10.1142/S0219199708002776.![]() ![]() ![]() |
[11] |
Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. Math., 168 (2008), 813-858.
doi: 10.4007/annals.2008.168.813.![]() ![]() ![]() |
[12] |
V. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., 137 (2009), 247-253.
doi: 10.1090/S0002-9939-08-09554-3.![]() ![]() ![]() |
[13] |
C. S. Lin and S. Yan, Existence of bubbling solutions for Chern-Simons model on a torus, Arch. Ration. Mech. Anal., 207 (2013), 353-392.
doi: 10.1007/s00205-012-0575-7.![]() ![]() ![]() |
[14] |
Y. Y. Li and I. Shafrir, Blow-up analysis for solutions of $-\Delta u=Ve^u$ in dimension two, Indiana Univ. Math. J., 43 (1994), 1255-1270.
doi: 10.1512/iumj.1994.43.43054.![]() ![]() ![]() |
[15] |
J. Moser, A sharp form of an inequality by N.Trudinger, Indiana Univ. Math. J., 11 (1971), 1077-1092.
doi: 10.1512/iumj.1971.20.20101.![]() ![]() ![]() |
[16] |
J. T. Stuart, On finite amplitude oscillations in laminar mixing layers, J. Fluid Mech., 29 (1967), 417-440.
![]() |
[17] |
J. Serrin, Local behavior of solutions of qusai-linear equations, Acta. Math., 111 (1964), 248-302.
doi: 10.1007/BF02391014.![]() ![]() ![]() |
[18] |
M. Struwe, The existence of surfaces of constant mean curvature with free boundaries, Acta. Math., 160 (1988), 19-64.
doi: 10.1007/BF02392272.![]() ![]() ![]() |
[19] |
G. F. Wang and C. Xia, Blow-up analysis of a Finsler-Liouville equation in two dimensions, J. Differ. Equ., 252 (2012), 1668-1700.
doi: 10.1016/j.jde.2011.08.001.![]() ![]() ![]() |
[20] |
R. L. Xie and H. J. Gong, A priori estimates and blow-up behavior for solutions of $-Q_{n}u=Ve^{u}$ in bounded domain in $\mathbb{R}^{n}$, Sci. China Math., 59 (2016), 479-492.
doi: 10.1007/s11425-015-5060-y.![]() ![]() ![]() |
[21] |
C. L. Zhou and C. Q. Zhou, Moser-Trudinger inequality involving the anisotropic Dirichlet norm $(\int_{\Omega}F^N(\nabla u)dx)^{\frac 1N}$ on $W^{1, N}_0(\Omega)$, J. Funct. Anal., 276 (2019), 2901-2935.
doi: 10.1016/j.jfa.2018.12.001.![]() ![]() ![]() |