\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Speed sign of traveling waves to a competitive Lotka-Volterra recursive system with bistable nonlinearity

  • * Corresponding author

    * Corresponding author

The first author is supported by the China Scholarship Council (202006180063). Research of the second author was supported by NSF of China (No. 11971213). Research of the third author was supported the NSERC discovery grant of Canada (grant No. RGPIN2016-04709)

Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • Traveling wave propagation is a significant phenomenon observed in population biology. Due to the occurrence of nonlocal effect in recursive systems, a deep understanding of the wavefront in the propagation direction (speed sign) is challenging. In this paper we study the sign of wave speed for bistable traveling waves to a two-species competitive system that biologically models the dynamics of two species in competition for a common resource. By a proper choice of the kernel functions, we transfer our model into a coupled localized differential system and shed a new light on how to determine the wave speed sign. Sufficient conditions with symmetry are obtained on the propagation directions of the wavefronts. This symmetry is further verified in the final analysis and numerical simulations are provided to illustrate our theoretical results.

    Mathematics Subject Classification: Primary: 39A70, 34K16; Secondary: 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The evolution of the solution $ u_n(x) $ and $ v_n(x) $ $ (n = 0,50,100,150) $ with $ \alpha_1 = \frac{8}{3} $, $ \alpha_2 = \frac{3}{2} $, $ \rho_1 = \frac{1}{9} $, $ \rho_2 = \frac{6}{5} $, $ r_1 = 2 $ and $ r_2 = 3 $ in (3.1)

    Figure 2.  The evolution of the solution $ u_n(x) $ and $ v_n(x) $ $ (n = 0,50,100,150) $ with $ \alpha_1 = \frac{3}{2} $, $ \alpha_2 = \frac{8}{3} $, $ \rho_1 = \frac{6}{5} $, $ \rho_2 = \frac{1}{9} $, $ r_1 = 3 $ and $ r_2 = 2 $ in (3.1)

    Figure 3.  The evolution of the solution $ u_n(x) $ and $ v_n(x) $ $ (n = 0,50,100,150) $ with $ \alpha_1 = 2.1 $, $ \alpha_2 = 1.1 $, $ \rho_1 = \rho_2 = 0.6 $ and $ r_1 = r_2 = 3 $ in (3.1)

    Figure 4.  The evolution of the solution $ u_n(x) $ and $ v_n(x) $ $ (n = 0,50,100,150) $ with $ \alpha_1 = 1.1 $, $ \alpha_2 = 2.1 $, $ \rho_1 = \rho_2 = 0.6 $ and $ r_1 = r_2 = 3 $ in (3.1)

  • [1] A. Alhasanat and C. Ou, Minimal-speed selection of traveling waves to the Lotka-Volterra competition model, J. Differ. Equ., 266 (2019), 7357-7378.  doi: 10.1016/j.jde.2018.12.003.
    [2] A. Alhasanat and C. Ou, On a conjecture raised by Yuzo Hosono, J. Dynam. Differ. Equ., 31 (2019), 287-304.  doi: 10.1007/s10884-018-9651-5.
    [3] A. Alhasanat and C. Ou, On the conjecture for the pushed wavefront to the diffusive Lotka-Volterra competition model, J. Math. Biol., 80 (2020), 1413-1422.  doi: 10.1007/s00285-020-01467-0.
    [4] J. M. CushingS. LevargeN. Chitnis and S. M. Henson, Some discrete competition models and the competitive exclusion principle, J. Differ.Equ. Appl., 10 (2004), 1139-1151.  doi: 10.1080/10236190410001652739.
    [5] J. Fang and X.-Q. Zhao, Bistable traveling waves for monotone semiflows with applications, J. Eur. Math. Soc., 17 (2015), 2243-2288.  doi: 10.4171/JEMS/556.
    [6] Z. Huang and C. Ou, Speed determinacy of traveling waves to a stream-population model with Allee effect, SIAM J. Appl. Math., 80 (2020), 1820-1840.  doi: 10.1137/19M1275486.
    [7] Z. Huang and C. Ou, Speed selection for traveling waves of a reaction-diffusion-advection equation in a cylinder, Phys. D, 402 (2020), 132-225.  doi: 10.1016/j.physd.2019.132225.
    [8] M. Kot, Discrete-time travelling waves: ecological examples, J. Math. Biol., 30 (1992), 413-436.  doi: 10.1007/BF00173295.
    [9] K. Li, J. Huang, X. Li and Y. He, Asymptotic behavior and uniqueness of traveling wave fronts in a competitive recursion system, Z. Angew. Math. Phys., 67 (2016), 17 pp. doi: 10.1007/s00033-016-0739-7.
    [10] M. A. LewisB. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competiotion models, J. Math. Biol., 45 (2002), 219-233.  doi: 10.1007/s002850200144.
    [11] F. Lutscher, Integrodifference Equations in Spatial Ecology, Springer, Cham, 2019. doi: 10.1007/978-3-030-29294-2.
    [12] X. LiuZ. OuyangZ. Huang and C. Ou, Spreading speed of the periodic Lotka-Volterra competition model, J. Differ. Equ., 275 (2021), 533-553.  doi: 10.1016/j.jde.2020.11.026.
    [13] X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.
    [14] M. MaZ. Huang and C. Ou, Speed of the traveling wave for the bistable Lotka-Volterra competition model, Nonlinearity, 32 (2019), 3143-3162.  doi: 10.1088/1361-6544/ab231c.
    [15] M. Ma and C. Ou, Linear and nonlinear speed selection for mono-stable wave propagations, SIAM J. Math. Anal., 51 (2019), 321-345.  doi: 10.1137/18M1173691.
    [16] M. Ma and C. Ou, The minimal wave speed of a general reaction-diffusion equation with nonlinear advection, Z. Angew. Math. Phys., 72 (2021), 14 pp. doi: 10.1007/s00033-021-01588-6.
    [17] M. Ma and C. Ou, Bistable wave-speed for monotone semiflows with applications, J. Differ. Equ., 323 (2022), 253-279.  doi: 10.1016/j.jde.2022.03.037.
    [18] M. Ma, J. Yue and C. Ou, Propagation direction of the bistable travelling wavefront for delayed non-local reaction diffusion equations, Proc. A., 475 (2019), 10 pp.
    [19] M. MaQ. ZhangJ. Yue and C. Ou, Bistable wave speed of the Lotka-Volterra competition model, J. Biol. Dyn., 14 (2020), 608-620.  doi: 10.1080/17513758.2020.1795284.
    [20] M. NeubertM. Kot and M. A. Lewis, Dispersal and pattern formation in a discrete-time predator-prey model, Theoret. Popul. Biol., 48 (1995), 7-43. 
    [21] C. PanH. Wang and C. Ou, Invasive speed for a competition-diffusion system with three species, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 3515-3532.  doi: 10.3934/dcdsb.2021194.
    [22] S. Pan, Monotone traveling waves of nonmonotone integrodifference equations, J. Appl. Anal. Comput., 11 (2021), 477-485.  doi: 10.11948/20200069.
    [23] H. WangZ. Huang and C. Ou, Speed selection for the wavefronts of the lattice Lotka-Volterra competition system, J. Differ. Equ., 268 (2020), 3880-3902.  doi: 10.1016/j.jde.2019.10.009.
    [24] M. Wang and M. Kot, Speeds of invasion in a model with strong or weak Allee effects, Math. Biosci., 171 (2001), 83-97.  doi: 10.1016/S0025-5564(01)00048-7.
    [25] M. WangM. Kot and M. Neubert, Integrodifference equations, Allee effects, and invasions, J. Math. Biol., 44 (2002), 150-168.  doi: 10.1007/s002850100116.
    [26] H. Wang and C. Ou, Propagation speed of the bistable traveling wave to the Lotka-Volterra competition system in a periodic habitat, J. Nonlinear Sci., 30 (2020), 3129-3159.  doi: 10.1007/s00332-020-09646-5.
    [27] H. Wang and C. Ou, Propagation direction of the traveling wave for the Lotka-Volterra competitive lattice system, J. Dynam. Differ. Equ., 33 (2021), 1153-1174.  doi: 10.1007/s10884-020-09853-4.
    [28] H. WangH. Wang and C. Ou, Spreading dynamics of a Lotka-Volterra competition model in periodic habitats, J. Differ. Equ., 270 (2021), 664-693.  doi: 10.1016/j.jde.2020.08.016.
    [29] H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.  doi: 10.1137/0513028.
    [30] H. F. WeinbergerM. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218.  doi: 10.1007/s002850200145.
    [31] R. Wu and X.-Q. Zhao, Propagation dynamics for a spatially periodic integrodifference competition model, J. Differ. Equ., 264 (2018), 6507-6534.  doi: 10.1016/j.jde.2018.01.039.
    [32] Y. Zhang and X.-Q. Zhao, Bistable travelling waves in competitive recursion systems, J. Differ. Equ., 252 (2012), 2630-2647.  doi: 10.1016/j.jde.2011.10.005.
    [33] Y. Zhang and X.-Q. Zhao, Uniqueness and stability of bistable waves for monotone semiflows, Proc. Amer. Math. Soc., 149 (2021), 4287-4302.  doi: 10.1090/proc/15506.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(173) PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return