In this paper, our purpose is to study the following weighted integral equation with negative power
$ \begin{equation} f^{q-1}(x) = \int_{\Omega}\dfrac {|x|^{\alpha}|y|^{\alpha}f(y)}{|x-y|^{N-\mu}} \ dy \ +\lambda\int_{\Omega}\dfrac {f(y)}{|x-y|^{N-\mu-1}} \ dy \ , f\geq0, x\in\overline{\Omega}\;(0.1) \end{equation} $
where $ \Omega $ is a bounded domain with smooth boundary in $ \mathbb{R}^N $, $ 0\in \Omega $, $ \mu>N $, $ \alpha<0 $ and $ \lambda $ is a real parameter. We prove that there exists a positive solution of problem (0.1) if $ 0<q\leq q_\mu = \frac{2N}{N+\mu} $ with a suitable $ \lambda $.
Citation: |
[1] |
W. Beckner, Functionals for multilinear fractional embedding, Acta Math. Sin. Engl. Ser., 31 (2015), 1-28.
doi: 10.1007/s10114-015-4321-6.![]() ![]() ![]() |
[2] |
W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality, Proc. Amer. Math. Soc., 136 (2008), 955-962.
doi: 10.1090/S0002-9939-07-09232-5.![]() ![]() ![]() |
[3] |
W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations, Discrete Contin. Dyn. Syst. (Suppl.), (2005), 164-173.
![]() ![]() |
[4] |
H. Chen, Q. Q. Guo and Q. Wang, Existence of positive solutions to negative power nonlinear integral equations with weights, Bound. Value Probl., (2020).
doi: 10.1186/s13661-020-01380-x.![]() ![]() ![]() |
[5] |
J. Dou and M. Zhu, Reversed Hardy-Littlewood-Sobolev inequality, Int. Math. Res. Not., 19 (2015), 9696-9726.
doi: 10.1093/imrn/rnu241.![]() ![]() ![]() |
[6] |
J. Dou and M. Zhu, Nonlinear integral equations on bounded domains, J. Funct. Anal., 277 (2019), 111-134.
doi: 10.1016/j.jfa.2018.05.020.![]() ![]() ![]() |
[7] |
J. Dou, Q. Guo and M. Zhu, Negative power nonlinear integral equations on bounded domains, J. Differ. Equ., 269 (2020), 10527-10557.
doi: 10.1016/j.jde.2020.07.021.![]() ![]() ![]() |
[8] |
Q. Q. Guo, Blow up analysis for integral equations on bouned domain, J. Differ. Equ., 266 (2019), 8258-8280.
doi: 10.1016/j.jde.2018.12.028.![]() ![]() ![]() |
[9] |
Q. Q. Guo and Q. Wang, Existence of positive solutions to integral equations with weights, Appl. Math. Lett., 102 (2020), 106089, 7 pp.
doi: 10.1016/j.aml.2019.106089.![]() ![]() ![]() |
[10] |
G. H. Hardy and J. E. Littlewood, On certain inequalities connected with the calculus of varations, J.Lond.Math.Soc., 5 (1930), 34-39.
doi: 10.1112/jlms/s1-5.1.34.![]() ![]() ![]() |
[11] |
G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals(1), Math.Z., 27 (1928), 565-606.
doi: 10.1007/BF01171116.![]() ![]() ![]() |
[12] |
H. Y. He, Symmetry breaking for integral equation of Hénon type on unit ball, J. Math. Anal. Appl., 484 (2020), 123696, 10 pp.
doi: 10.1016/j.jmaa.2019.123696.![]() ![]() ![]() |
[13] |
C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670.
doi: 10.1090/S0002-9939-05-08411-X.![]() ![]() ![]() |
[14] |
C. Jin and C. Li, Qualitative analysis of some systems of integral equations, Calc. Var. Partial Differ. Equ., 26 (2006), 447-457.
doi: 10.1007/s00526-006-0013-5.![]() ![]() ![]() |
[15] |
E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374.
doi: 10.2307/2007032.![]() ![]() ![]() |
[16] |
Q. N. Ngô and V. H. Nguyen, Sharp reversed Hardy-Littlewood-Soblev inequality on $\mathbb{R}^N$, Isr. J. Math., 220 (2017), 189-223.
doi: 10.1007/s11856-017-1515-x.![]() ![]() ![]() |
[17] |
S. L. Sobolev, On a theorem of functional analysis, Mat. Sb. (N.S.), 4 (1938), 471-479.
![]() |
[18] |
E. M. Stein and G. Weiss, Fractional integrals in n-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514.
doi: 10.1512/iumj.1958.7.57030.![]() ![]() ![]() |