For a sequence of spaces $ X_N $, with topological, algebraic or measure-theoretic structures, we show how a large-$ N $ limit $ X_\infty $ with corresponding structures is obtained. For example, when each space is a topological group $ G_N $, such as $ G_N = U(N) $, a limiting group $ G_\infty $ with topology results. Using the Weil-Kodaira construction, for compact topological groups $ G_N $ equipped with normalized Haar measures, we obtain a topological structure on $ G_\infty $ that also makes the group operations continuous. When each $ G_N $ is a Lie group we describe a Lie algebra associated to $ G_\infty $.
Citation: |
[1] | I. Alam, An introduction to the probabilistic method through the Lovász Local Lemma, arXiv: 1909.11078. |
[2] | I. Alam, Limiting probability measures, J. Log. Anal. 12 (2020), 35 pp. doi: 10.4115/jla.2020.12.1. |
[3] | S. Albeverio, R. H$\phi$egh-Krohn, J. Fenstad and T. Lindstr$\phi$m, Nonstandard methods in stochastic analysis and mathematical physics, Academic Press, Inc., Orlando, FL, 1986. |
[4] | P. Bankston, A Survey of Ultraproduct Constructions in General Topology, arXiv: math/9709203v1. |
[5] | A. Borovik and M. G. Katz, Who gave you the Cauchy-Weierstrass tale? The dual history of rigorous calculus, Found. Sci.. 17 (2012), 245-276. doi: 10.1007/s10699-011-9235-x. |
[6] | H. Cartan, Théorie des filtres, C. R. Acad. Sci. Paris, 205 (1937), 595-598. |
[7] | H. Cartan, Théorie des ultrafiltres., C. R. Acad. Sci. Paris, 205 (1937), 777-778. |
[8] | F. Destrempes and A. Sengupta, Configurations of points in sets of positive measure and in Baire sets of second category, Fund. Math., 133 (1989), 155-159. doi: 10.4064/fm-133-2-155-159. |
[9] | B. K. Driver, F. Gabriel, B. C. Hall and T. Kemp, The Makeenko-Migdal equation for Yang-Mills theory on compact surfaces, Commun. Math. Phys., 352 (2017), 967-978. doi: 10.1007/s00220-017-2857-2. |
[10] | T. Frayne, D. Scott and A. Tarski, Reduced Products., Notices, Amer. Math. Soc., 5 (1958), 673-674. |
[11] | T. E. Frayne, A. Morel and D. Scott, Reduced direct products, Fund. Math.. 51 (1962), 195-228. doi: 10.4064/fm-51-3-195-228. |
[12] | I. Goldbring, Nonstandard hulls of locally exponential Lie algebras, J. Log. Anal., 1 (2009), 25 pp. doi: 10.4115/jla.2009.1.5. |
[13] | I. Goldbring, Nonstandard hulls of locally uniform groups, Fund. Math., 220 (2013), 93-118. doi: 10.4064/fm220-2-1. |
[14] | I. Goldbring, Ultrafilters Throughout Mathematics, American Mathematical Society, Providence, RI (2022). doi: 10.1090/gsm/220. |
[15] | D. Gross and A. Matytsin, Some properties of large-N two-dimensional Yang-Mills theory, Nuclear Phys. B. 437 (1995), 541-584. doi: 10.1016/0550-3213(94)00570-5. |
[16] | L. Gross, C. King and A. Sengupta, Two-dimensional Yang-Mills theory via stochastic differential equations, Ann. Phys., 194 (1989), 65-112. doi: 10.1016/0003-4916(89)90032-8. |
[17] | P. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950 |
[18] | H. J. Keisler, A survey of ultraproducts, Logic, Methodology And Philos. Sci. (Proc. 1964 Internat. Congr.). pp. 112-126 (1965) |
[19] | K. Kodaira, über die Beziehung zwischen den Massen und den Topologien in einer Gruppe, Proc. Phys.-Math. Soc. Japan (3). 23 (1941), 67-119. |
[20] | T. Lévy, The master field on the plane, Astérisque., ix+201 (2017) |
[21] | P. A. Loeb, A combinatorial analog of Lyapunov's theorem for infinitesimally generated atomic vector measures, Proc. Amer. Math. Soc.. 39 (1973), 585-586. doi: 10.2307/2039598. |
[22] | P. A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc.. 211 (1975), 113-122. doi: 10.2307/1997222. |
[23] | J. Łoś, Quelques Remarques, Thèorémes et Problémes sur les Classes Dèfinissables d'Algébres, in Mathematical Interpretation Of Formal Systems, 1955. |
[24] | R. Parikh, A nonstandard theory of topological groups, in Applications Of Model Theory To Algebra, Analysis, And Probability (Internat. Sympos., Pasadena, Calif., 1967), 1969. |
[25] | A. Robinson, Non-Standard Analysis, North-Holland Publishing Co., Amsterdam (1966) |
[26] | P. Samuel, Ultrafilters and compactification of Uniform Spaces. (ProQuest LLC, Ann Arbor, MI, 1947), Ph.D thesis, Princeton University, 1947. |
[27] | A. Sengupta, Quantum gauge theory on compact surfaces, Ann. Physics. 221 (1993), 17-52. doi: 10.1006/aphy.1993.1002. |
[28] | I. M. Singer, On the master field in two dimensions, in Functional Analysis On The Eve Of The 21st Century, Vol. 1 (New Brunswick, NJ, 1993). 131 (1995), 263-281. |
[29] | T. Tao, Ultraproducts as a Bridge Between Discrete and Continuous Analysis, https://terrytao.wordpress.com/2013/12/07/ultraproducts-as-a-bridge-between-discrete-and-continuous-analysis/. |
[30] | A. Weil, Sur les groupes topologiques et les groupes mesures., C. R. Acad. Sci., Paris. 202 (1936), 1147-1149. |
[31] | A. Weil, Sur les espaces à structure uniforme et sur la topologie générale., Oeuvres Scientifiques/Collected Papers. I., (2014), 1926-1951. |