behavior of |
case |
case |
|
This paper studies the global structure of the set of nodal solutions of a generalized Sturm–Liouville boundary value problem associated to the quasilinear equation
$ -(\phi(u'))' = \lambda u + a(t)g(u), \quad \lambda\in {\mathbb R}, $
where $ a(t) $ is non-negative with some positive humps separated away by intervals of degeneracy where $ a\equiv 0 $. When $ \phi(s) = s $ this equation includes a generalized prototype of a classical model going back to Moore and Nehari [
Citation: |
Figure 2. Plots of $ \mathcal {T} $ according to Table 1
Table 1.
Behavior of the period map
behavior of |
case |
case |
|
[1] | H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differ. Equ., 146 (1998), 336-374. doi: 10.1006/jdeq.1998.3440. |
[2] | C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differ. Equ., 243 (2007), 536-557. doi: 10.1016/j.jde.2007.05.014. |
[3] | C. Bereanu and J. Mawhin, Nonhomogeneous boundary value problems for some nonlinear equations with singular $\phi$-Laplacian, J. Math. Anal. Appl., 352 (2009), 218-233. doi: 10.1016/j.jmaa.2008.04.025. |
[4] | G. Buttazzo, M. Giaquinta and S. Hildebrandt, One-dimensional Variational Problems, Clarendom Press, Oxford, 1998. |
[5] | S. Cano-Casanova, J. López-Gómez and K. Takimoto, A quasilinear parabolic perturbation of the linear heat equation, J. Differ. Equ., 252 (2012), 323-343. doi: 10.1016/j.jde.2011.09.018. |
[6] | A. Cima, A. Gasull and F. Mañosas, Period function for a class of Hamiltonian systems, 168 (2000), 180-199 doi: 10.1006/jdeq.2000.3912. |
[7] | M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340. doi: 10.1016/0022-1236(71)90015-2. |
[8] | P. Cubillos, J. López-Gómez and A. Tellini, Multiplicity of nodal solutions in classical non-degenerate logistic equations, Electron. Res. Arch., 30 (2022), 898-928. doi: 10.3934/era.2022047. |
[9] | R. L. Devaney, Subshifts of finite type in linked twist mappings, Proc. Amer. Math. Soc., 71 (1978), 334-338. doi: 10.2307/2042860. |
[10] | M. Fencl and J. López-Gómez, Global bifurcation diagrams of positive solutions for a class of 1d-superlinear indefinite problems, Nonlinearity, 35 (2022), 1213-1248. doi: 10.1088/1361-6544/ac4a88. |
[11] | B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34 (1981), 525-598. doi: 10.1002/cpa.3160340406. |
[12] | A. Gritsans and F. Sadyrbaev, Extension of the example by Moore-Nehari, Tatra Mt. Math. Publ., 63 (2015), 115-127. doi: 10.1515/tmmp-2015-0024. |
[13] | R. Kajikiya, Existence of nodal solutions for the sublinear Moore-Nehari differential equation, Discret. Contin. Dyn. Syst., 41 (2021), 1483-1506. doi: 10.3934/dcds.2020326. |
[14] | R. Kajikiya, Symmetric and asymmetric nodal solutions for the Moore–Nehari differential equation, J. Math. Soc. Japan, 74 (2022), 655-680. doi: 10.2969/jmsj/86168616. |
[15] | J. Kennedy and J. A. Yorke, Topological horseshoes, Trans. Amer. Math. Soc., 353 (2001), 2513-2530. doi: 10.1090/S0002-9947-01-02586-7. |
[16] | J. López-Gómez, Spectral theory and nonlinear functional analysis, volume 426 of Chapman Hall/CRC Res. Notes Math., Boca Raton, FL: Chapman & Hall/CRC, 2001. doi: 10.1201/9781420035506. |
[17] | J. López-Gómez, Metasolutions of Parabolic Equations in Population Dynamics, CRC Press and Chapman and Hall. Boca Raton, FL, 2015. |
[18] | J. López-Gómez, Global bifurcation for Fredholm operators, Rend. Istit. Mat. Univ. Trieste, 48 (2016), 539-564. doi: 10.13137/2464-8728/13172. |
[19] | J. López-Gómez, M. Molina-Meyer and P. H. Rabinowitz, Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems, Discret. Contin. Dyn. Syst. Ser. B, 22 (2017), 923-946. doi: 10.3934/dcdsb.2017047. |
[20] | J. López-Gómez and C. Mora-Corral, Counting zeroes of $ \mathcal C^1$-Fredholm maps of index $1$, Bull. London Math. Soc., 37 (2005), 778-792. doi: 10.1112/S0024609305004716. |
[21] | J. López-Gómez and E. Muñoz-Hernández, Global structure of subharmonics in a class of periodic predator-prey models, Nonlinearity, 33 (2020), 34-71. doi: 10.1088/1361-6544/ab49e1. |
[22] | J. López-Gómez, E. Muñoz-Hernández and F. Zanolin, On the applicability of the Poincaré-Birkhoff twist theorem to a class of planar periodic predator-prey models, Discret. Contin. Dyn. Syst., 40 (2020), 2393-2419. doi: 10.3934/dcds.2020119. |
[23] | J. López-Gómez, E. Muñoz-Hernández and F. Zanolin, The Poincaré-Birkhoff theorem for a class of degenerate planar Hamiltonian systems, Adv. Nonlinear Stud., 21 (2021), 489-499. doi: 10.1515/ans-2021-2137. |
[24] | J. López-Gómez, E. Muñoz-Hernández and F. Zanolin, Subharmonic solutions for a class of predator-prey models with degenerate weights in periodic environments, arXiv: 2212.11280, 2022. |
[25] | J. López-Gómez and P. Omari, Global components of positive bounded variation solutions of a one-dimensional indefinite quasilinear Neumann problem, Adv. Nonlinear Stud., 19 (2019), 437-473. doi: 10.1515/ans-2019-2048. |
[26] | J. López-Gómez and P. Omari, Branches of positive solutions of a superlinear indefinite problem driven by the one-dimensional curvature operator, Appl. Math. Lett., 126 (2022), 107807. doi: 10.1016/j.aml.2021.107807. |
[27] | J. López-Gómez and P. Omari, Characterizing the formation of singularities in a superlinear indeifnite problem related to the mean curvature operator, J. Differ. Equ., 269 (2020), 1544-1570. doi: 10.1016/j.jde.2020.01.015. |
[28] | J. López-Gómez and P. H. Rabinowitz, Nodal solutions for a class of degenerate boundary value problems, Adv. Nonlinear Stud., 15 (2015), 253-288. doi: 10.1515/ans-2015-0201. |
[29] | J. López-Gómez and P. H. Rabinowitz, Nodal solutions for a class of degenerate one dimensional BVP's, Topol. Methods Nonlinear Anal., 49 (2017), 359-376. doi: 10.12775/tmna.2016.087. |
[30] | J. López-Gómez and P. H. Rabinowitz, The structure of the set of 1-node solutions of a class of degenerate BVP's, J. Differ. Equ., 268 (2020), 4691-4732. doi: 10.1016/j.jde.2019.10.040. |
[31] | J. López-Gómez and J. C. Sabina de Lis, Coexistence states and global attractivity for some convective diffusive competing species models, Trans. Amer. Math. Soc., 347 (1995), 3797-3833. doi: 10.2307/2155205. |
[32] | J. López-Gómez, A. Tellini and F. Zanolin, High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems, Commun. Pure Appl. Anal., 13 (2014), 1-73. doi: 10.3934/cpaa.2014.13.1. |
[33] | R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with $p$-Laplacian-like operators, J. Differ. Equ., 145 (1998), 367-393. doi: 10.1006/jdeq.1998.3425. |
[34] | A. Margheri, C. Rebelo and F. Zanolin, Chaos in periodically perturbed planar Hamiltonian systems using linked twist maps, J. Differ. Equ., 249 (2010), 3233-3257. doi: 10.1016/j.jde.2010.08.021. |
[35] | R. A. Moore and Z. Nehari, Nonoscillation theorems for a class of nonlinear differential equations, Trans. Amer. Math. Soc., 93 (1959), 30-52. doi: 10.2307/1993421. |
[36] | J. S. Muldowney and D. Willett, An elementary proof of the existence of solutions to second order nonlinear boundary value problems, SIAM J. Math. Anal., 5 (1974), 701-707. doi: 10.1137/0505068. |
[37] | D. Papini and F. Zanolin, A topological approach to superlinear indefinite boundary value problems, Topol. Methods Nonlinear Anal., 15 (2000), 203-233. doi: 10.12775/TMNA.2000.017. |
[38] | P. Pucci and J. Serrin, The maximum principle, volume 73 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Verlag, Basel, 2007. |
[39] | P. H. Rabinowitz, A note on a nonlinear eigenvalue problem for a class of differential equations, J. Differ. Equ., 9 (1971), 536-548. doi: 10.1016/0022-0396(71)90022-2. |
[40] | P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513. doi: 10.1016/0022-1236(71)90030-9. |
[41] | P. H. Rabinowitz, On bifurcation from infinity, J. Differ. Equ., 14 (1973), 462-475. doi: 10.1016/0022-0396(73)90061-2. |
[42] | P. H. Rabinowitz, A note on pairs of solutions of a nonlinear Sturm–Liouville problem, Manus. Math., 11 (1974), 273-282. doi: 10.1007/BF01173718. |
[43] | C. Rebelo, A note on uniqueness of Cauchy problems associated to planar Hamiltonian systems, Portugal. Math., 57 (2000), 415-419. |
[44] | R. Schaaf, A class of Hamiltonian systems with increasing periods, J. Reine Angew. Math., 363 (1985), 96-109. doi: 10.1515/crll.1985.363.96. |
[45] | R. Schaaf, Global solution branches of two-point boundary value problems, volume 1458 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1990. doi: 10.1007/BFb0098346. |
[46] | A. Tellini, High multiplicity of positive solutions for superlinear indefinite problems with homogeneous Neumann boundary conditions, J. Math. Anal. Appl., 467 (2018), 673-698. doi: 10.1016/j.jmaa.2018.07.034. |
[47] | J. Villadelprat and X. Zhang, The period function of Hamiltonian systems with separable variables, J. Dyn. Differ. Equ., 32 (2020), 741-767. doi: 10.1007/s10884-019-09759-w. |
[48] | S. Wiggins and J. M. Ottino, Foundations of chaotic mixing, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362 (2004), 937-970. doi: 10.1098/rsta.2003.1356. |
Bifurcation diagram for
Plots of
Bifurcation diagrams for
Two minimal global bifurcation diagrams
The action of the Poincaré map
The action of the flow induced by
The oriented regions
A closed orbit of
Admissible transitions of