Advanced Search
Article Contents
Article Contents

Global dynamics of a two-species competition model in advective homogeneous environments

  • *Corresponding author: Jinyu Wei

    *Corresponding author: Jinyu Wei 

Research partially supported by NNSF of China(No. 12231008)

Abstract Full Text(HTML) Related Papers Cited by
  • We investigate a two-species competition model in advective homogeneous environments. We assume that the two species are identical except their diffusion rates and advection rates. It is worth noting that the Neumann boundary condition is assumed at upstream end, meanwhile, there is always a net loss of individuals incurred by water flow or both water flow and diffusive movements at downstream end. Our results show that when the downstream loss is large (incurred by both water flow and diffusive movements), the species adopting both slower diffusion and advection can be favorable or unfavorable depending on the gap between two diffusion rates. When the downstream loss is small (incurred by water flow alone), the species adopting a combination of faster diffusion and weak advection will persist while the movement of faster diffusion and advection can be favorable or unfavorable for species to survive depending on the gap between two advection rates.

    Mathematics Subject Classification: Primary: 35K57, 35K61,; Secondary: 92D25.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. M. Desai and D. R. Nelson, A quasispecies on a moving oasis, Theor. Pop. Biol., 67 (2005), 33-45. 
    [2] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.
    [3] S. B. HsuH. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Am. Math. Soc., 348 (1996), 4083-4094.  doi: 10.1090/S0002-9947-96-01724-2.
    [4] M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Usp. Mat. Nauk, 3 (1948), 3-95. 
    [5] K. Y. Li and F. Xu, Global dynamics of a population model from river ecology, J. Appl. Anal.Comput., 10 (2020), 1698-1707. 
    [6] Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342.  doi: 10.1007/s00285-013-0730-2.
    [7] Y. LouD. M. Xiao and P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discrete Contin. Dyn. Syst., Ser. A, 36 (2016), 953-969.  doi: 10.3934/dcds.2016.36.953.
    [8] Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions, J. Differ. Equ., 259 (2015), 141-171.  doi: 10.1016/j.jde.2015.02.004.
    [9] F. LutscherE. McCauley and M. Lewis, Spatial patterns and coexistence mechanisms in rivers, Theor. Popul. Biol., 71 (2007), 267-277. 
    [10] F. LutscherE. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749-772.  doi: 10.1137/050636152.
    [11] L. Ma and D. Tang, Evolution of dispersal in advective homogenous environments, Discret. Contin. Dyn. Syst., Ser. A, 40 (2020), 5815-5830.  doi: 10.3934/dcds.2020247.
    [12] H. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr., vol. 41, Amer. Math. Soc., Providence, RI, 1995. 82 (2001), 1219-1237.
    [13] D. C. Speirs and W. S. C. Gurney, Population dynamics in rivers and estuaries, Ecology, 82 (2001), 1219-1237. 
    [14] D. Tang and Y. M. Chen, Global dynamics of a Lotka-Volterra competition-diffusion system in advective homogeneous environments, J. Differ. Equ., 269 (2020), 1465-1483.  doi: 10.1016/j.jde.2020.01.011.
    [15] D. Tang and Y. M. Chen, Global dynamics of a Lotka-Volterra competition-diffusion system in advective heterogeneous environments, SIAM, J. Appl. Dyn. Syst., 20 (2021), 1232-1252.  doi: 10.1137/20M1372639.
    [16] D. Tang and P. Zhou, On a Lotka-volterra competition-diffusion-advection system: Homogeneity vs heterogeneity, J. Differ. Equ., 268 (2020), 1570-1599.  doi: 10.1016/j.jde.2019.09.003.
    [17] O. Vasilyeva and F. Lutsccher, Population dynamics in rivers: analysis of steady states, Can. Appl. Math. Q., 18 (2011), 439-469. 
    [18] T. F. Waters, The drift of stream insects, Ann. Rev. Entomol., 17 (1972), 253-272. 
    [19] J. Y. Wei and B. Liu, Dynamical behaviors of a Lotka-Volterra competitive system from river ecology, to appear, East Asian Journal on Applied Mathematics.
    [20] F. F. Xu and W. Z. Gan, On a Lotka-Volterra type competieion model from river ecology, Nonlinear Anal. Real World Appl., 47 (2019), 373-384.  doi: 10.1016/j.nonrwa.2018.11.011.
    [21] F. F. XuW. Z. Gan and D. Tang, Population dynamics and evolution in river ecosystems, Nonlinear Anal. Real World Appl., 51 (2020), 102983.  doi: 10.1016/j.nonrwa.2019.102983.
    [22] X.-Q. Zhao and P. Zhou, On a Lotka-Volterra competition model: the effects of advection and spatial variation, Calc. Var. Partial Differ. Equ., 55 (2016) 73. doi: 10.1007/s00526-016-1021-8.
    [23] P. Zhou, On a Lotka-Volterra competition system: diffusion vs advection, Calc. Var. Partial Differ. Equ., 55 (2016), 137.  doi: 10.1007/s00526-016-1082-8.
    [24] P. Zhou and D. M. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. Funct. Anal., 275 (2018), 356-380.  doi: 10.1016/j.jfa.2018.03.006.
    [25] P. Zhou and X.-Q. Zhao, Global dynamics of a two species competition model in open stream environments, J. Dyn. Differ. Equ., 30 (2018), 613-636.  doi: 10.1007/s10884-016-9562-2.
    [26] P. Zhou and X.-Q. Zhao, Evolution of passive movement in advective environments: general boundary condition, J. Differ. Equ., 264 (2018), 4176-4198.  doi: 10.1016/j.jde.2017.12.005.
  • 加载中

Article Metrics

HTML views(1254) PDF downloads(162) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint