In this paper, we study the existence of solutions to the initial-boundary value problem for the following parabolic differential inclusion:
$ \begin{equation*} \begin{cases} u_t\left(t, x \right) -\triangle _{p}u\left( t, x \right) \in -\partial \phi \left( u\left( t, x \right) \right) + G\left( t, x, u\left( t, x \right) \right) & (t, x) \in Q_T, \\ u(t, x) = 0 & (t, x) \in \Gamma_T, \\ u(0, x) = u_0(x) & x \in \Omega, \end{cases} \end{equation*} $
where $ \Omega $ is a bounded open subset of $ \mathbb{R}^{N} $ with smooth boundary $ \partial \Omega, $ $ T>0 $, $ Q_{T}: = [0, T] \times \Omega $, $ \Gamma_T: = [0, T] \times \partial\Omega $, $ u_t = \frac{\partial u}{\partial t} $, $ \triangle_{p} $ is the $ p $-Laplace differential operator, $ \partial \phi $ denotes the subdifferential of a proper lower semicontinuous convex function $ \phi :\mathbb{R}\rightarrow \left[ 0, \infty \right] $, and $ G:Q_{T}\times \mathbb{R}\rightarrow 2^{ \mathbb{R}} \backslash \{\emptyset\} $ is a nonmonotone multivalued mapping.
The case where $ \phi \equiv 0 $ and $ G(t, x, u) = |u|^{q-2}u $ gives the prototype of our problem, denoted by (E)$ _p $. The existence of time-local strong solutions for (E)$ _p $ is already studied by several authors. However, these results require a stronger assumption on $ q $ than that for the semi-linear case (E)$ _p $ with $ p = 2 $.
More precisely, it has been long conjectured that (E)$ _p $ should admit a time-local strong solution for the Sobolev-subcritical range of $ q $, i.e., for all $ q \in (2, p^\ast) $ with $ p^\ast = \infty $ for $ p \geq N $ and $ p^\ast = \frac{N p}{N-p} $ for $ p<N $, which is the well-known fact for the semi-linear case (E)$ _p $ with $ p = 2 $.
The main purpose of the present paper is to show this conjecture holds true and to extend this classical study to the cases where $ u \mapsto G(\cdot, \cdot, u) $ is upper semicontinuous or lower semicontinuous, each one is a generalized notion of the continuity in the theory of multivalued analysis.
We also discuss the extension of large or small local solutions along the lines of arguments developed in [28].
Citation: |
[1] |
J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin, 1984.
doi: 10.1007/978-3-642-69512-4.![]() ![]() ![]() |
[2] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publ., Leyden, 1976.
![]() ![]() |
[3] |
G. Barletta, Parabolic equations with discontinuous nonlinearities, Bull. Australian Math. Soc., 63 (2001), 219-228.
doi: 10.1017/S0004972700019286.![]() ![]() ![]() |
[4] |
H. Brézis, Opérateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.
![]() ![]() |
[5] |
H. Brézis, Analyse Fonctionnelle: Théorie et Applications, Masson, Paris, 1983.
![]() ![]() |
[6] |
H. Brézis, M. G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Commun. Pure Appl. Math., 23 (1970), 123-144.
doi: 10.1002/cpa.3160230107.![]() ![]() ![]() |
[7] |
S. Carl, C. Grossmann and C. V. Pao, Existence and monotone iterations for parabolic differential inclusions, Commun. Appl. Nonlinear Anal., 3 (1996), 1-24.
![]() ![]() |
[8] |
S. Carl, Enclosure of solution for quasilinear dynamic hemivariational inequalities, Nonlinear World, 3 (1996), 281-298.
![]() ![]() |
[9] |
S. Carl and S. Heikkila, On a parabolic boundary value problem with discontinuous nonlinearity, Nonlinear Anal., 15 (1990), 1091-1095.
doi: 10.1016/0362-546X(90)90156-B.![]() ![]() ![]() |
[10] |
S. Carl, V. K. Le and D. Motreanu, Nonlinear Variational Problems and Their Inequalities, Springer, New York, 2007.
doi: 10.1007/978-0-387-46252-3.![]() ![]() ![]() |
[11] |
S. Carl and D. Motreanu, Extremality in solving general quasilinear parabolic inclusions, J. Optim. Th. Appl., 123 (2004), 463-477.
doi: 10.1007/s10957-004-5718-z.![]() ![]() ![]() |
[12] |
S. Carl and D. Motreanu, Extremal solutions of quasilinear parabolic inclusions with generalized Clarke's gradient, J. Differ. Equ., 191 (2003), 206-233.
doi: 10.1016/S0022-0396(03)00022-6.![]() ![]() ![]() |
[13] |
T. Cardinali and N. S. Papageorgiou, Periodic problems and problems with discontinuities for nonlinear parabolic equations, Czech. Math. J., 50 (2000), 467-497.
doi: 10.1023/A:1022873208183.![]() ![]() ![]() |
[14] |
K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102-129.
doi: 10.1016/0022-247X(81)90095-0.![]() ![]() ![]() |
[15] |
H. Deguchi, On weak solutions of parabolic initial value problems with discontinuous nonlinearities, Nonlinear Anal., 63 (2005), 1-9.
doi: 10.1016/j.jmaa.2005.10.052.![]() ![]() ![]() |
[16] |
N. Dunford and J. T. Schwartz, Linear Operators, Part. I, Interscience, New York, 1958.
![]() ![]() |
[17] |
E. Feireisl, A note on uniqueness for parabolic problems with discontinuous nonlinearities, Nonlinear Anal., 19 (1991), 1053-1056.
doi: 10.1016/0362-546X(91)90106-B.![]() ![]() ![]() |
[18] |
E. Feireisl and J. Norbury, Some existence, uniqueness and nonuniqueness theorems for solutions of parabolic equations with discontinuous nonlinearities, Proc. Royal Soc. Edinb., 119 (1991), 1-17.
doi: 10.1017/S0308210500028262.![]() ![]() ![]() |
[19] |
B. A. Fleishman and T. J. Mahar, A step function model in chemical reactor theory: Multiplicity and stability of solutions, Nonlinear Anal., 15 (1981), 645-654.
doi: 10.1016/0362-546X(81)90080-8.![]() ![]() ![]() |
[20] |
A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps, Stud. Math., 76 (1981), 163-174.
doi: 10.4064/sm-76-2-163-174.![]() ![]() ![]() |
[21] |
L. Gasinski and N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman Hall and CRC Press, Boca Raton, 2005.
![]() ![]() |
[22] |
N. Halidias and N. S. Papageorgiou, Existence of solutions for nonlinear parabolic problems, Arch. Math. (Brno), 35 (1999), 255-274.
![]() ![]() |
[23] |
C. J. Himmelberg, Measurable relations, Fund. Math., 87 (1975), 53-72.
doi: 10.4064/fm-87-1-53-72.![]() ![]() ![]() |
[24] |
J. Hofbauer and P. L. Simon, An existence theorem for parabolic equation on $\mathbb{R}^{N}$ with discontinuous nonlinearities, Electron. J. Qual. Theor. Differ. Equ., 15 (1981), 645-654.
![]() ![]() |
[25] |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer, Dordrecht, 1997.
doi: 10.1007/978-1-4615-6359-4.![]() ![]() ![]() |
[26] |
H. Ishii, Asymptotic stability and blowing up of solutions of some nonlinear equations, J. Differ. Equ., 26 (1977), 291-319.
doi: 10.1016/0022-0396(77)90196-6.![]() ![]() ![]() |
[27] |
M. Ôtani, On existence of strong solutions for $\frac{d u}{d t}(t) + \partial\psi^{1}(u(t)) - \partial\psi^{2}(u(t)) \ni f(t)$, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 575-605.
![]() ![]() |
[28] |
M. Ôtani, Non-monotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems, J. Differ. Equ., 46 (1982), 268-299.
doi: 10.1016/0022-0396(82)90119-X.![]() ![]() ![]() |
[29] |
M. Ôtani, Non-monotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Periodic problems, J. Differ. Equ., 54 (1984), 248-273.
doi: 10.1016/0022-0396(84)90161-X.![]() ![]() ![]() |
[30] |
M. Ôtani, $L^{\infty}$-energy method, basic tools and usage, Differential Equations, Chaos and Variational Problems, Progress in Nonlinear Differential Equations and Their Applications, Vol. 75, Ed. by Vasile Staicu, Birkhauser, (2007), 357-376.
doi: 10.1007/978-3-7643-8482-1_27.![]() ![]() ![]() |
[31] |
M. Ôtani and V. Staicu, Existence results for quasilinear elliptic equations with multivalued nonlinear terms, Set-Valued Var. Anal., 22 (2014), 859-877.
doi: 10.1007/s11228-014-0289-0.![]() ![]() ![]() |
[32] |
M. Ôtani and V. Staicu, On some nonlinear parabolic equations with nonmonotone multivalued terms, J. Convex Anal., 28 (2021), 771-794.
![]() ![]() |
[33] |
N. S. Papageorgiou, On the existence of solutions for nonlinear parabolic problems with nonmonotone discontinuities, J. Math. Anal. Appl., 205 (1997), 434-453.
doi: 10.1006/jmaa.1997.5208.![]() ![]() ![]() |
[34] |
J. Rauch, Discontinuous semilinear differential equations and multiple valued maps, Proc. Amer. Math. Soc., 64 (1977), 277-282.
doi: 10.2307/2041442.![]() ![]() ![]() |
[35] |
J. Simon, Compact sets in the space $L^{p}(0, t; B)$, Ann. Mat. Pur. Appl., 146 (1986), 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[36] |
M. Tsutsumi, Existence and nonexistence of global solutions for nonlinear parabolic equations, RIMS, Kyoto Univ., 17 (1972), 211-229.
doi: 10.2977/prims/1195193108.![]() ![]() ![]() |