We answer positively to [3]*Question 2.4 by building new examples of solutions to the forced $ 3d $-Navier-Stokes equations with vanishing viscosity, which exhibit anomalous dissipation and which enjoy uniform bounds in the space $ L^3_t C^{^{1}\!\!\diagup\!\!_{3-\varepsilon}\;}_x $, for any fixed $ \varepsilon >0 $. Our construction combines ideas of [3] and [5].
Citation: |
[1] | D. Albritton, E. Brué and M. Colombo, Non-uniqueness of Leray solutions of the forced Navier-Stokes equations, Ann. Math., 196 (2022), 415-455. doi: 10.4007/annals.2022.196.1.3. |
[2] | D. Albritton, E. Brué and M. Colombo et al., Instability and nonuniqueness for the 2d Euler equations in vorticity form, after M. Vishik, preprint, 2021, arXiv: 2112.04943. |
[3] | E. Brué and C. De Lellis, Anomalous dissipation for the forced 3d Navier-Stokes equations, Comm. Math. Phys., (2023), 27 pp. doi: 10.1007/s00220-022-04626-0. |
[4] | T. Buckmaster, C. De Lellis and L. Székelyhidi, et al., Onsager's conjecture for admissible weak solutions, Commun. Pure Appl. Math., 72 (2019), 229-274. doi: 10.1002/cpa.21781. |
[5] | M. Colombo, G. Crippa and M. Sorella, Anomalous dissipation and lack of selection in the Obukhov-Corrsin theory of scalar turbulence, preprint, 2022, arXiv: 2207.06833 |
[6] | P. Constantin, W. E and E. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Commun. Math. Phys., 165 (1994), 207-209. |
[7] | C. De Lellis, L. Székelyhidi and Jr., The Euler equations as a differential inclusion, Ann. Math., 170 (2009), 1417-1436. doi: 10.4007/annals.2009.170.1417. |
[8] | C. De Lellis, L. Székelyhidi and Jr., Dissipative continuous Euler flows, Invent. Math., 193 (2013), 377-407. doi: 10.1007/s00222-012-0429-9. |
[9] | L. De Rosa and P. Isett, Intermittency and lower dimensional dissipation in incompressible fluids: quantifying Landau, preprint, 2022, arXiv: 2212.08176 |
[10] | L. De Rosa, M. Inversi and G. Stefani, Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces, preprint, 2022, arXiv: 2204.12779. |
[11] | G. L. Eying, Energy dissipation without viscosity in ideal hydrodynamics. Ⅰ. Fourier analysis and local energy transfer, Phys. D., 79 (1994), 222-240. doi: 10.1016/0167-2789(94)90117-1. |
[12] | P. Isett, A proof of Onsager's conjecture, Ann. Math., 188 (2018), 871-963. doi: 10.4007/annals.2018.188.3.4. |
[13] | C. J. P. Johansson and M. Sorella, Nontrivial absolutely continuous part of anomalous dissipation measures in time, preprint, 2023, arXiv: 2303.09486. |
[14] | I. Jeong and T. Yoneda, Quasi-streamwise vortices and enhanced dissipation for the incompressible 3d Navier-Stokes equations, Proc. Amer. Math. Soc., 150 (2022), 1279-1286. doi: 10.1090/proc/15754. |
[15] | I. Jeong and T. Yoneda, Vortex stretching and anomalous dissipation for the incompressible 3d Navier-Stokes equations, Math. Ann., 380 (2021), 2041-2072. doi: 10.1007/s00208-020-02019-z. |
[16] | L. Onsager, Statistical hydrodynamics, Nuovo Cimento, Supplemento 2 (Convegno Internazionale di Meccanica Statistica), 6 (1949), 279-287. |
[17] | M. Vishik, Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid, Part Ⅰ, preprint, 2018, arXiv: 1805.09426. |
[18] | M. Vishik, Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid, Part Ⅱ, preprint, 2018, arXiv: 1805.09440. |
[19] | E. Wiedemann, Weak-strong uniqueness in fluid dynamics, London Math. Soc. Lecture Note Ser., 452 (2018), 289-326. |